問題文全文(内容文):
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
単元:
#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
$a,b$を定数とする。$x,y$の連立方程式、
\begin{eqnarray}
\left\{
\begin{array}{l}
(a+2)x - (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
\end{eqnarray}
の解が$x = 3,y = 1$であるとき、$a,b$の値を求めよ。
投稿日:2024.07.29




