【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ - 質問解決D.B.(データベース)

【数B】【数列】1から8までの数字のさいころを繰り返し投げ、n回目までに出た数字の合計をX (n) とする。X (n) を3で割ったあまりが0,1,2をそれぞれ数列で置くとき、それぞれの一般項を求めよ

問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
各面に1から8までの数字が1つずつ書かれた正八面体のさいころを繰り返し投げ、
n回目までに出た数字の合計をX (n) とする。
X (n) を3で割り切れる確率を $a_n$、X (n) を3で割った時1余る確率を$b_n$、
X(n)を3で割った時2余る確率を$c_n$とする。
ただし1から8までの数字の出る確率はどれも同じとする。
1) $a_1$,$b_1$, $c_1$を求めよ。
2)$a_{n+1}$、$b_{n+1}$、$c_{n+1}$を$a_n$、$b_n$、$c_n$を用いて表せ。
3)$a_{n+1}$を$a_n$を用いて表せ。
4) $a_n$、$b_n$、$c_n$を求めよ。
投稿日:2025.10.11

<関連動画>

【高校数学】等差数列の性質~等差数列の証明と等差中項~ 3-3【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,6,2aが等差数列のとき、aの値を求めよ
この動画を見る 

高知大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
各項は正である数列$a_n$の和を$S_n$とする

$S_n=\frac{1}{2}{a_n}^2+\frac{1}{2}{a_n}-1$

が成り立つとき、一般項$a_n$を求めよ

高知大学2012年過去問
この動画を見る 

数学「大学入試良問集」【13−3 等差×等比の和】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
年齢1の1つの個体から始めて、以下の操作1,2を$n$回おこなった後の全個体の年齢数の合計を$S_n$とする。
操作1.
 年齢1の各個体から年齢0の$k$個の個体を発生される。
 ただし、$k \gt 1$とする。

操作2.
 全個体の年齢をそれぞれ1増やす。

次の問いに答えよ。
(1)
$k=2$のとき$S_4$を求めよ。

(2)
操作1,2を$n$回おこなった後の平均年齢を$A_n$とするとき、$A_n \lt \displaystyle \frac{k}{k-1}$となることを示せ。
この動画を見る 

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
この動画を見る 

福田のおもしろ数学538〜数列の一般項を1つの式で表す

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
この動画を見る 
PAGE TOP