中央大学経済学部の数学で範囲外出題 #shorts - 質問解決D.B.(データベース)

中央大学経済学部の数学で範囲外出題 #shorts

問題文全文(内容文):
まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入試では、「整数問題は出題しない」としていたにも関わらず、受験生から「整数問題が出てるじゃないか」という声が複数上がっています。

今回問題視されているのは、「2025の正の約数のうち、素数でないものは何個あるか?」という問題。これは基本中の基本だという意見もあれば、「これは整数問題の範囲だからダメだろう」という意見も出ています。

中央大学経済学部の数学の範囲は、数学I・IIと、数学Aの「図形の性質」「場合の数と確率」と明記されています。この問題が、範囲外とされる整数問題とみなすべきなのか、それとも基礎的な問題として許容されるのか、専門家の間でも意見が分かれている状況です。

この問題、範囲内?それとも範囲外?数学の先生方の意見が待たれます!
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入まさかの事態発生!中央大学経済学部の数学入試で、**出題範囲外**の疑惑が浮上しました!

今年の入試では、「整数問題は出題しない」としていたにも関わらず、受験生から「整数問題が出てるじゃないか」という声が複数上がっています。

今回問題視されているのは、「2025の正の約数のうち、素数でないものは何個あるか?」という問題。これは基本中の基本だという意見もあれば、「これは整数問題の範囲だからダメだろう」という意見も出ています。

中央大学経済学部の数学の範囲は、数学I・IIと、数学Aの「図形の性質」「場合の数と確率」と明記されています。この問題が、範囲外とされる整数問題とみなすべきなのか、それとも基礎的な問題として許容されるのか、専門家の間でも意見が分かれている状況です。

この問題、範囲内?それとも範囲外?数学の先生方の意見が待たれます!
投稿日:2025.02.19

<関連動画>

福田の数学〜名古屋大学2023年理系第1問〜4次方程式の解と共役な複素数の性質

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#名古屋大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数係数の4次方程式$x^4$$-px^3$$+qx^2$$-rx$$+s$=0 は相異なる複素数$\alpha$, $\bar{\alpha}$, $\beta$, $\bar{\beta}$を解に持ち、点1を中心とする半径1の円周上にあるとする。ただし、$\bar{\alpha}$, $\bar{\beta}$はそれぞれ $\alpha$, $\beta$と共役な複素数を表す。
(1)$\alpha$+$\bar{\alpha}$=$\alpha$$\bar{\alpha}$ を示せ。
(2)$t$=$\alpha$+$\bar{\alpha}$, $u$=$\beta$+$\bar{\beta}$とおく。p, q, r, sをそれぞれtとuで表せ。
(3)座標平面において、点(p, s)のとりうる範囲を図示せよ。

2023名古屋大学理系過去問
この動画を見る 

大学入試問題#786「よく出題されている。」 慶應義塾大学商学部(2024) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \lt b \lt c$ かつ$\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{3}{c}=2$を満たす自然数の組$(a,b,c)$をすべて求めよ

出典:2024年慶應義塾大学商学部 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第2問(3)〜推定して数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (3) 次の条件によって定められる数列$\left\{a_n\right\}$がある。
$a_1$=1, $a_{n+1}$=$\sqrt{a_n^2+1}$ ($n$=1,2,3,...)
(i)$a_2$=$\boxed{\ \ シ\ \ }$, $a_3$=$\boxed{\ \ ス\ \ }$であり、一般項$a_n$を推定すると$a_n$=$\boxed{\ \ セ\ \ }$である。
(ii)一般項$a_n$が$a_n$=$\boxed{\ \ セ\ \ }$であることの数学的帰納法による証明を述べよ。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x^2} dx$

出典:2014年奈良教育大学
この動画を見る 

小樽商科大 3次方程式 整数解 有理数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
この動画を見る 
PAGE TOP