河合塾講師のストで荻野先生が炎上 #shorts - 質問解決D.B.(データベース)

河合塾講師のストで荻野先生が炎上 #shorts

問題文全文(内容文):
緊急速報!河合塾講師のストライキ問題が飛び火!なぜかあの予備校講師が**炎上**する事態に!

人気YouTubeチャンネル「Morite2 English Channel」が、先日投稿した**塾講師のストライキ動画**に寄せられたコメントが波紋を呼んでいる。なんと、予備校の**荻野(おぎの)先生**が「炎上」しているというのだ!

炎上のきっかけは、荻野先生がSNS(X)で「**生徒に迷惑をかけたらダメ**」と投稿したこと。生徒にとっては授業をしないことは迷惑がかかる、という予備校講師目線、生徒目線からの当然の意見だった。授業が中断されれば進度が遅れる可能性もあるからだ。

ところがこれに対し、「**ストライキは迷惑をかけなきゃ意味がない**」といったコメントが殺到!労働者として生きる社会人から見れば、消費者側に迷惑がかかるのが「スト」なのだ、という意見がぶつけられた形だ。

荻野先生からすると、「あんたたちの目線で予備校や教育業界を語るな」ということだろう。これは、予備校講師目線と、労働者(社会人)目線という、**目線が全く違う**ために、折り合いがつくわけがない状況だという。

この動画では、交渉や条件という意味を持つ重要な単語「**terms**」について、「**come to terms**(折り合いがつく)」という形で出題されやすいと解説し、受験生への学習アドバイスも添えられている。

このストライキ論争、あなたはどちらの意見に共感する?予備校業界を揺るがす議論から目が離せない!
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
緊急速報!河合塾講師のストライキ問題が飛び火!なぜかあの予備校講師が**炎上**する事態に!

人気YouTubeチャンネル「Morite2 English Channel」が、先日投稿した**塾講師のストライキ動画**に寄せられたコメントが波紋を呼んでいる。なんと、予備校の**荻野(おぎの)先生**が「炎上」しているというのだ!

炎上のきっかけは、荻野先生がSNS(X)で「**生徒に迷惑をかけたらダメ**」と投稿したこと。生徒にとっては授業をしないことは迷惑がかかる、という予備校講師目線、生徒目線からの当然の意見だった。授業が中断されれば進度が遅れる可能性もあるからだ。

ところがこれに対し、「**ストライキは迷惑をかけなきゃ意味がない**」といったコメントが殺到!労働者として生きる社会人から見れば、消費者側に迷惑がかかるのが「スト」なのだ、という意見がぶつけられた形だ。

荻野先生からすると、「あんたたちの目線で予備校や教育業界を語るな」ということだろう。これは、予備校講師目線と、労働者(社会人)目線という、**目線が全く違う**ために、折り合いがつくわけがない状況だという。

この動画では、交渉や条件という意味を持つ重要な単語「**terms**」について、「**come to terms**(折り合いがつく)」という形で出題されやすいと解説し、受験生への学習アドバイスも添えられている。

このストライキ論争、あなたはどちらの意見に共感する?予備校業界を揺るがす議論から目が離せない!
投稿日:2025.05.16

<関連動画>

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 

【数学】2023年度 第4回 高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
この動画を見る 

【数学模試解説】2022年度 第4回 K塾高2記述模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5$,$BC=7$,$CA=6$の三角形ABCがある。$cos∠BAC$の値と三角形ABCの外接円の半径を求めよ。

(2)aは実数の定数とする。xの2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。

(3)方程式$x^3-4x²+8=0$を解け。

(4)mは実数の定数とする。座標平面における原点Oと直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。

(5)実数xが、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。

(6)方程式$log_{ 4 } {(5x-1)}=log_{2}{(2x-1)}$を解け。

大問2:三角関数
(1)$sin{\frac{π}{12}}$,$cos{\frac{π}{12}}$の値を求めよ。

(2)Oを原点とするxy平面上にOを中心とする半径1の円Eがあり、E上に3点$A(0,-1)$,$B(\frac{-\sqrt{3}}{2},\frac{1}{2})$, $C(\frac{1}{2},\frac{-\sqrt{3}}{2})$がある。また、Eの上に点Pをとり、$P(cosθ,sinθ)$$(0≦θ≦\frac{π}{2})$とするとき、Lを$L=AP²+BP²+CP²$と定める。
(i)Lをθで表せ。
(ii)θが$0≦θ≦\frac{π}{2}$を変化するとき、Lの最大値、最小値とそれを与えるθの値を求めよ。

大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードをA,B,Cの3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)Aのカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)Aのカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)A,B,Cのカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。

大問4:微分法
aを正の定数とし、関数f(x)を$f(x)=x^3-ax^2+4a-8$とする。
連立不等式$y≧f(x),y≦f(0),x≧0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、f(x)の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値をMとする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)aを$\frac{9}{4}<a<\frac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるようなaの値の範囲を求めよ。


大問5:数列
rは0以外の実数とする。数列$a_n$は、$a_1=1$,$a_{n+1}=ra_n$ $(n=1,2,3,…)$を満たしている。また、この数列$a_n$に対して、数列$b_n$を、$b_1=-1$,$b_{n+1}=2b_n+a_n $ $(n=1,2,3,…)$によって定める。
(1)数列$a_n$の一般項を求めよ。
(2)数列$c_n$を $c_n=\frac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列$c_n$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問5_三角関数 (※(*)式に訂正あり)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の整数とする。$\theta$の方程式$ \sin(a\theta)+\sqrt3\cos(a\theta)=1$ ・・・(*) がある。
(1)$\sin(\theta+\dfrac{\pi}{3}$)を$\sin\theta, \cos\theta$の式で表せ。
(2)$a=1$のとき、(*)を$0\leqq\theta\lt 2\pi$において表せ。
(3)(*)の$\theta\geqq 0$を満たすθのうち、小さい方から4つをaを用いて表せ。
(4)Nを正の整数とする。$0\leqq\lt 2\pi$において、(*)の解がちょうど2N個存在するようなaの値の範囲をNを用いて表せ。
この動画を見る 
PAGE TOP