福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2 - 質問解決D.B.(データベース)

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
投稿日:2023.08.11

<関連動画>

【数C】【複素数平面】ド・モアブルの定理1 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$が自然数のとき、$\displaystyle (\frac{1+i}{\sqrt{2}})^n-(\frac{1-i}{\sqrt{2}})^n$ の値を求めよ。
この動画を見る 

基本問題

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z+\dfrac{1}{Z}=-\sqrt{3}$のとき,
$Z^{2023}+\dfrac{1}{Z^{2023}}$の値を求めよ。

この動画を見る 

16東京都教員採用試験(数学:1-6番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#その他#数学(高校生)#数C#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(6)
$Z+\frac{1}{Z} = \sqrt 3$ , $(Z \in \mathbb{ C })$
argZを求めよ。
この動画を見る 

複素数平面の基本①複素数平面の基本的な考え方

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本的な考え方
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第1問(1)〜複素数と三角形の外接円

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)a$を正の実数とする。$x$についての方程式
$(x^2+ax+2)(x^2-ax-1)=0・・・①$
が異なる2つの実数解と異なる2つの虚数解をもつのは
$\boxed{ア} \lt a \lt \boxed{イ}\sqrt{\boxed{ウ}}・・・②$
のときである。
以下では、$a$は不等式$②$を満たす最大の整数とし、$i$は虚数単位とする。このとき、複素数平面上において、方程式$①$の異なる2つの虚数解と$3+i$を頂点とする三角形の面積は$\boxed{エ}$であり、この三角形の外接円を複素数zの方程式で表すと
$|x-\boxed{オ}|=\sqrt{\boxed{カ}}$
である。
この動画を見る 
PAGE TOP