【数学】中高一貫校問題集2幾何98:円:円周角の定理:弧の長さの和 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集2幾何98:円:円周角の定理:弧の長さの和

問題文全文(内容文):
半径4cmの円Oの内部に点Pをとり、図のようにPで直交する円Oの弦AB、CDを引く。このとき、弧ACの長さと弧BDの長さの和を求めなさい。
チャプター:

0:00 オープニング
0:05 問題文
0:22 解説
1:43 エンディング

単元: #数学(中学生)#中3数学#円
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
半径4cmの円Oの内部に点Pをとり、図のようにPで直交する円Oの弦AB、CDを引く。このとき、弧ACの長さと弧BDの長さの和を求めなさい。
投稿日:2023.10.04

<関連動画>

【数学】中3-5 素数と素因数分解

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
素数・・・①____とその数以外に②____
をもたない数
③____ ・・・・ 整数がいくつかの積の形で
表されたとき、その1つ1つの数。
(例)$30=2 \times 3 \times 5→$③は$2,3,5$
④20以下の素数をすべて書こう!!
1.2.3.4.5.6.7.8.9.10
11.12.13.14.15.16.17.18.19.20
⑤30以上40未満の素数をすべて書こう!!
ほとんどの素数が ⑥____なんだ!!

◎素因数分解しよう!!
⑦$28$
⑧$72$
⑨$180$

⑩54にできるだけ小さい自然数のをかけて、
ある自然数の2乗にしたい。$n$はいくつで、その時、
どんな数の2乗になるかな?

この動画を見る 

超気持ちいい!!気付けば一瞬!!帝京大学高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#2次方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-2x-1 = 0$のとき
$x^2(x-1)^2(x-2)^2$ =

帝京大学高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題100〜慶應義塾大学2020年度総合政策学部第3問〜半円に接する5つの円

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三平方の定理#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 図のように(※動画参照)半円の中に、半径1の4つの円A, B, C, Dと、別の半径の円Eがあり、次のように接している。円Aは半円の円弧と直径と円Bに接し、円Bは半円の円弧と円A, C, Eに接し、円Cは半円の円弧と円B, D, Eに接し、円Dは半円の円弧と直径と円Cに接している。また、円Eじゃ半円の直径と円B, Cに接している。
このとき、半円の半径は
$\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }+\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キク\ \ }}}$
であり、円Eの半径は
$\frac{\boxed{\ \ ケコ\ \ }+\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }}$
である。

2020慶應義塾大学総合政策学部過去問
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:平面図形 長方形の回転

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
AB=4cm, BC=6cmの長方形ABCDがある。直線L上において、この長方形を右の図のように、点Bが再び直線L上にくるまですべることなく転がす。
(1)点Bの軌跡の長さを求めなさい。
(2)長方形ABCDの対角線の交点をOとするとき、点Oの軌跡の長さを求めなさい。
この動画を見る 

【数学】中3-23 ルートの問題をつめこんでみた

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$x=3 \sqrt{7}+2$のとき
$x^2-4x+4$の値は?

$x= \sqrt{2}+\sqrt{5}$ ,$y= \sqrt{2}-\sqrt{5} $の時
$x^2 - y^2$の値は?

$ \sqrt{a}+\sqrt{18}= \sqrt{50}$を満たす自然数$a$は?

$ \displaystyle \frac{1}{\sqrt{5}-\sqrt{3}} $を有理化しよう!

◎ $\sqrt{75a}$の値が自然数となるような$a$について…
⑤もっとも小さい$a$は?

⑥2番目に小さい$a$は?
この動画を見る 
PAGE TOP