大学入試問題#640「ミスれない問題」 東邦大学医学部(2013) 剰余の定理 - 質問解決D.B.(データベース)

大学入試問題#640「ミスれない問題」 東邦大学医学部(2013) 剰余の定理

問題文全文(内容文):
$x^9-1$を$x+1$で割ったときの商を$P(x)$とするとき、$P(x)$を$x-2$で割ったときの余りを求めよ。

出典:2013年東邦大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: ますただ
問題文全文(内容文):
$x^9-1$を$x+1$で割ったときの商を$P(x)$とするとき、$P(x)$を$x-2$で割ったときの余りを求めよ。

出典:2013年東邦大学医学部 入試問題
投稿日:2023.11.06

<関連動画>

名古屋大 微分積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$

(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ

(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ

出典:名古屋大学 過去問
この動画を見る 

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
この動画を見る 

【数B】漸化式:東大1995年 タイルの敷き詰め

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2辺の長さが1と2の長方形と1辺の長さが2の正方形の2種類のタイルがある。縦2,横nの長方形の部屋をこれらのタイルで過不足なく敷き詰めることを考える。その並べ方の総数をA[n]で表す。ただし,nは正の整数である。たとえば$ A_1=1, A_2=3, A_3=5$ である。このとき,以下の問いに答えよう。
(1)$n≧3$のとき,$A_n$を$A_{n-1},A_{n-2}$を用いて表そう。
(2)$A_n$をnで表そう。
この動画を見る 

熊本大 関数の領域

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
y \geqq x^2-1 \\
y \leqq x+1
\end{array}
\right.
\end{eqnarray}$

$(x,y)$がこの領域を動く
$x^2+y^2-4y$の最大値・最小値を求めよ。

出典:2001年熊本大学 過去問
この動画を見る 

福田の数学〜神戸大学2024年理系第4問〜回転体の体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 1辺の長さが$\sqrt 2$の正方形ABCDを底面にもち、高さが1である直方体ABCD-EFGHを、頂点の座標がそれぞれ
A(1,0,0), B(0,1,0), C(-1,0,0), D(0,-1,0),
E(1,0,1), F(0,1,1), G(-1,0,1), H(0,-1,1)
になるように$xyz$空間におく。以下の問いに答えよ。
(1)直方体ABCD-EFGHを直線AEのまわりに1回転してできる回転体を$X_1$とし、また直線ABのまわりに1回転してできる回転体を$X_2$とする。$X_1$の体積$V_1$と$X_2$の体積$V_2$を求めよ。
(2)0≦$t$≦1 とする。平面$x$=$t$と線分EFの共有点の座標を求めよ。
(3)直方体ABCD-EFGHを$x$軸のまわりに1回転してできる回転体を$X_3$とする。
$X_3$の体積$V_3$を求めよ。
この動画を見る 
PAGE TOP