大学入試問題#640「ミスれない問題」 東邦大学医学部(2013) 剰余の定理 - 質問解決D.B.(データベース)

大学入試問題#640「ミスれない問題」 東邦大学医学部(2013) 剰余の定理

問題文全文(内容文):
$x^9-1$を$x+1$で割ったときの商を$P(x)$とするとき、$P(x)$を$x-2$で割ったときの余りを求めよ。

出典:2013年東邦大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東邦大学
指導講師: ますただ
問題文全文(内容文):
$x^9-1$を$x+1$で割ったときの商を$P(x)$とするとき、$P(x)$を$x-2$で割ったときの余りを求めよ。

出典:2013年東邦大学医学部 入試問題
投稿日:2023.11.06

<関連動画>

大学入試問題#502「誘導ありで私立の医学部」 私立医学部医学科系 #定積分 by 英語orドイツ語さん

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi-2}^{\pi(\pi+1)} \displaystyle \frac{dx}{x^2+\pi^2}$
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)77x+52y=1$を満たす整数$x$、$y$の組のうち、$x$が正で最小の組は$(x,y)=(\boxed{ア},\boxed{イ})$である。
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 

兵庫県立大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
正整数$a$と正の奇数
$p,q$が$2^a+p^2=q^4$を満たしている。

(1)
$q^2-p=2$を証明せよ。

(2)
$q$を全て求めよ。


出典:兵庫県立大学 過去問
この動画を見る 

【合格体験記】京大法学部に現役合格した篠原塾卒業生と対談

アイキャッチ画像
単元: #その他#学部紹介#京都大学#勉強法#その他
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
京都大学法学部に現役合格した篠原塾卒業生との対談動画です。
この動画を見る 
PAGE TOP