福田のおもしろ数学107〜京都大学の有名問題〜車両の色塗り - 質問解決D.B.(データベース)

福田のおもしろ数学107〜京都大学の有名問題〜車両の色塗り

問題文全文(内容文):
$n$両編成($n$≧2)に各車両に赤、青、黄の3色のいずれかを塗る。隣り合った車両の少なくとも一方が赤になるような塗り方は何通りあるか。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$n$両編成($n$≧2)に各車両に赤、青、黄の3色のいずれかを塗る。隣り合った車両の少なくとも一方が赤になるような塗り方は何通りあるか。
投稿日:2024.04.10

<関連動画>

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 

場合の数 集合~ベン図にまとめよう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある地区で、新聞Aを購読している世帯は全体の50%、新聞Bを購読して
いる世帯は全体の60%、両方を購読している世帯は全体の30%、どちら
も購読していない世帯は8世帯であった。このとき、Aだけを購読している
世帯は全体の何%か。また、この地区の世帯数を求めよ。

海外旅行者100人のうち、75人がカゼ薬を、80人が胃薬を携帯して
いた。次のような人は、最も多くて何人か。また少なくて何人か。
(1)カゼ薬と胃薬を両方とも携帯した人
(2)カゼ薬と胃薬を両方とも携帯してない人
この動画を見る 

福田のわかった数学〜高校1年生087〜確率(7)反復試行の確率(1)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(7) 反復試行(1)
さいころをn回振った時に
(1)1の目がr回出る確率を求めよ。
(2)1の目がj回、2の目がk回出る確率を求めよ。 
この動画を見る 

【高校数学】  数A-5  場合の数② ・ 正の約数編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①48の正の約数は何個?
②48の正の約数の総和はいくつ?
③600の正の約数は何個?
④600の正の約数の総和はいくつ?
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。
(1)$m \geqq 2$となる確率は$\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}$であり、
$m=1$となる確率は$\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}$である。
(2)$m \geqq 2$かつ$M \leqq 5$となる確率は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$であり、$m \geqq 2$かつ$M=6$となる確率は
$\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}$である。

(3)$m=1$かつ$M=6$となる確率は$\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}$である。

2021青山学院大学理工学部過去問
この動画を見る 
PAGE TOP