福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式

問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
投稿日:2024.03.09

<関連動画>

大学入試問題#23 東北大学(2020) 三角関数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$y=\sin\ x$の2つの接線が直交するとき
その交点の$y$座標の値をすべて求めよ。

出典:2020年東北大学 入試問題
この動画を見る 

#電気通信大学(2017) #区分求積法 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$

出典:2017年電気通信大学
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(6)〜高次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (6)$a,b$を実数、$i$を虚数単位とする。4次方程式
$x^4+(a+2)x^3-(2a+2)x^2+(b+1)x+a^3=0$
の1つの解が$1+i$であるとき、
$a=\boxed{\ \ コ\ \ }, b=\boxed{\ \ サ\ \ }$
である。また、他の解は$\boxed{\ \ シ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

数学「大学入試良問集」【2−4 剰余の定理•商と余り】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。

(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
この動画を見る 

大学入試問題#297 産業医科大学(2010) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
この動画を見る 
PAGE TOP