【数学】中3-22 ルートと展開のコラボ - 質問解決D.B.(データベース)

【数学】中3-22 ルートと展開のコラボ

問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$(x+y)^2=$
$(x-y)^2=$
$(x+y) (x-y)=$
$(x+a) (X+b)=$

⑤$(\sqrt{5}-\sqrt{3})^2=$
⑥$(\sqrt{7}+\sqrt{2}) (\sqrt{7}-\sqrt{2}) =$
⑦$(\sqrt{2}+5) (\sqrt{2}+4)=$
⑧$\sqrt{2}(\sqrt{12 }-\sqrt{3}) =$
⑨$(2\sqrt{2}+3) (2\sqrt{2}-3)=$
⑩$(\sqrt{2}+4\sqrt{2})^2=$
11$(4\sqrt{3}-1) (-2\sqrt{3}+3)=$
12$(\sqrt{3}-4) (\sqrt{3}+1) -\sqrt{3}(2-5\sqrt{3}) =$
投稿日:2013.05.30

<関連動画>

【作問者の掌(てのひら)で踊る…!】平方根:城北高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{2023\times2021-4044+2}$の値を求めよ.

城北高校過去問
この動画を見る 

ルートの大小関係

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 2 + \sqrt 3$ , $1 + \sqrt 6$ , $\sqrt {10}$
どれが一番大きい?

札幌光星高等学校
この動画を見る 

平方根とは?  三重高校(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
平方根についてのまとめ
・正の数の平方根は$\bbox[red, 5pt, border:]{}$コある。
この$\bbox[red, 5pt, border:]{}$コの数は$\bbox[green, 5pt, border:]{}$が等しく$\bbox[blue, 5pt, border:]{}$が異なる。
・0の平方根は$\bbox[yellow, 5pt, border:]{}$である。
この動画を見る 

【工夫のポイントは…!】平方根:お茶の水女子大学附属高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#お茶の水女子大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を計算し、簡単にしなさい。
$\left(\displaystyle\frac{\sqrt{3}}{\sqrt{5}-2}-\frac{4\sqrt{3}}{3-\sqrt{5}}\right)^7\times\left(-\sqrt{\displaystyle\frac{1}{9}}\right)^6$
この動画を見る 

【理解は3分!計算は30秒!】平方根:土浦日本大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#平方根#高校入試過去問(数学)#土浦日本大学高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 土浦日本大学高等学校

次の▬をうめなさい。

$(\displaystyle \frac{\sqrt{ 5 }+\sqrt{ 3 }}{2})^2(\displaystyle \frac{\sqrt{ 5 }-\sqrt{ 3 }}{2})^2=\displaystyle \frac{▬}{▬}$
この動画を見る 
PAGE TOP