東北大 三次関数と放物線の共有点の数 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東北大 三次関数と放物線の共有点の数 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
東北大学過去問題
$y=x^2+k$と$y=|x(x^2-1)|$との共有点の個数
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
$y=x^2+k$と$y=|x(x^2-1)|$との共有点の個数
投稿日:2018.06.20

<関連動画>

福田の数学〜東京大学2025文系第2問〜三角形の3頂点を中心とする3つの円で3辺を含む条件と三角形を含む条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

平面上で$AB=AC=1$である

二等辺三角形$ABC$を考える。

正の実数$r$に対し、$A,B,C$それぞれを中心とする

半径$r$の円$3$つを合わせた領域を$D_r$とする。

ただし、この問いでは、

三角形と円は周とその内部からなるものとする。

辺$AB,AC,BC$がすべて$D_r$に

含まれるような最小の$r$を$s$、

三角形$ABC$が

$D_r$に含まれるような最小の$r$を$t$と表す。

(1)$\angle BAC=\dfrac{\pi}{3}$のとき、$s$と$t$を求めよ。

(2)$\angle BAC=\dfrac{2\pi}{3}$のとき、$s$と$t$を求めよ。

(3)$0\lt \theta \lt \pi$を満たす$\theta$に対して、

$\angle BAC=\theta$のとき、$s$と$t$を$\theta$を用いて表せ。

$2025$年東京大学文系過去問題
この動画を見る 

福田のおもしろ数学091〜定積分と軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\int_x^y(|t|-1)dt$=0 を満たす点($x$,$y$)の軌跡を図示せよ。
この動画を見る 

【数Ⅱ】【微分法と積分法】極値を持つ条件 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件に適するように、定数aの値の範囲を、それぞれ定めよ。
(1)関数$f(x)=\frac{1}{3}x^3+ax^2+(a+2)x+1$が極値をもつ。
(2)関数$g(x)=x^3+ax^2-3ax+2$が極値をもたない。
この動画を見る 

対数の基本性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.$a,b,c$を正とし,$a,b,c \neq 1$である.
$\dfrac{1}{1+\log_a bc}+\dfrac{1}{1+\log_b ca}+\dfrac{1}{1+\log_c ab}$
この動画を見る 

昭和大(医学部)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.

昭和大(医)過去問
この動画を見る 
PAGE TOP