大学入試問題#418「場合分けがめんどくさいだけの積分」 藤田保健衛生大学医学部2016 #定積分 - 質問解決D.B.(データベース)

大学入試問題#418「場合分けがめんどくさいだけの積分」 藤田保健衛生大学医学部2016 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} |x\ \sin(x-\displaystyle \frac{\pi}{2})| dx$

出典:2016年藤田保健衛生大学医学部 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} |x\ \sin(x-\displaystyle \frac{\pi}{2})| dx$

出典:2016年藤田保健衛生大学医学部 入試問題
投稿日:2023.01.09

<関連動画>

大学入試問題#429「誘導があってもよいような・・・」 小樽商科大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^{\frac{5}{2}} dx$

出典:小樽商科大学
この動画を見る 

福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $xyz$空間内の$xy$平面上にある円C:$x^2$+$y^2$=1および円盤D:$x^2$+$y^2$≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。$xyz$空間内の平面H:$z$=$x$を考える。すなわち、Hは$xz$平面上の直線$z$=$x$と線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。$-\frac{\pi}{2}$≦$\theta$≦$\frac{\pi}{2}$を満たす実数$\theta$に対し、円C上の点Q($\cos\theta$,$\sin\theta$,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さを$r(\theta)$とおく。$r(\theta)$を$\theta$を用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積を$S(\theta)$とおく。$\theta$と実数$h$が条件0≦$\theta$<$\theta$+$h$≦$\frac{\pi}{2}$ を満たすとき、次の不等式が成り立つことを示せ。
$\frac{h\left\{r(\theta)\right\}^2}{2\sqrt 2}$≦$S(\theta+h)-S(\theta)$≦$\frac{h\left\{r(\theta+h)\right\}^2}{2\sqrt 2}$
(3)円錐Kの側面のうち、円Cの$x$≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であれば$\tan\frac{\theta}{2}$=$uとおく置換積分を用いてもよい。
この動画を見る 

【高校数学】毎日積分34日目【区分求積法】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
今回は共通テスト直後ということで、忘れがちな区分求積法について解説!
この動画を見る 

大学入試問題#14 津田塾大学(2021) 微積の応用

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

【高校数学】毎日積分50日目 実践編①回転体シリーズ~必要な平面を図示~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$xyz$空間内で4点(0,0,0),(1,0,0),(1,1,0),(0,1,0)を頂点とする正方形の周および内部をKとし、Kをx軸のまわりに1回転させてできる立体をKx,Kをy軸のまわりに1回転させてできる立体をKyとする。さらに、KxとKyの共通部分をLとし、KxとKyの少なくともどちらか一方に含まれる点全体からなる立体をMとする。このとき、以下の問いに答えよ。
(1) Kxの体積を求めよ。
(2)平面$z=t$がKxと共有点をもつような実数tの値の範囲を答えよ。またこのとき、Kxを平面$z=t$で切った断面積A(t)を求めよ。
(3)平面$z=t$がLと共有点をもつような実数tの値の範囲を答えよ。また、このとき、Lを平面$z=t$で切った断面積B(t)を求めよ。
(4) Lの体積を求めよ。
(5) Mの体積を求めよ。
この動画を見る 
PAGE TOP