大学入試問題#727 三重大学医学部etc (2023) 三角関数 - 質問解決D.B.(データベース)

大学入試問題#727 三重大学医学部etc (2023) 三角関数

問題文全文(内容文):
$\cos\displaystyle \frac{\pi}{9}・\cos\displaystyle \frac{2\pi}{9}・\cos\displaystyle \frac{4\pi}{9}$の値を求めよ

出典:2023年三重大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\cos\displaystyle \frac{\pi}{9}・\cos\displaystyle \frac{2\pi}{9}・\cos\displaystyle \frac{4\pi}{9}$の値を求めよ

出典:2023年三重大学医学部 入試問題
投稿日:2024.02.06

<関連動画>

大学入試問題#247 明治大学(2014) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ h \to 0 }\displaystyle \frac{log(1+5h+6h^2)}{h}$を求めよ。

出典:2014年明治大学 入試問題
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(2)〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)三角形ABC内に点Pがあり、$3\overrightarrow{ PA }+5\ \overrightarrow{ PB }+7\ \overrightarrow{ PC }=\overrightarrow{ 0 }$のとき、
$\overrightarrow{ AP }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケコ\ \ }}\overrightarrow{ AC }$
となるので、$\triangle PAB :\triangle PBC :\triangle PCA=\boxed{\ \ サ\ \ }$である。

$\boxed{\ \ サ\ \ }$の解答群
$⓪1:1:1  ①3:5:7  ②5:7:3  ③7:3:5  ④9:25:49$
$⑤25:49:9  ⑥49:9:25  ⑦\frac{1}{3}:\frac{1}{5}:\frac{1}{7}  ⑧\frac{1}{5}:\frac{1}{7}:\frac{1}{3}  ⑨\frac{1}{7}:\frac{1}{3}:\frac{1}{5}$

2021明治大学全統過去問
この動画を見る 

福田の数学〜陰関数を考える貴重な問題〜明治大学2023年全学部統一Ⅲ第4問〜陰関数のグラフの増減とグラフ

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 座標空間において、2点(-2,0),(2,0)からの距離の積が4であるような点Pの軌跡を考える。点Pの座標を($x$,$y$)とすると、$x$,$y$は次の方程式を満たす。
$y^4$+$\boxed{\ \ ア\ \ }y^2$+$(\boxed{\ \ イ\ \ })^2$=16 ...(1)
方程式(1)が表す曲線を$C$とする。$C$の概形を描くことにしよう。まず、曲線$C$と$x$軸との共有点の$x$座標は$\boxed{\ \ ウ\ \ }$と$±\boxed{\ \ エ\ \ }\sqrt{\boxed{\ \ オ\ \ }}$である。次に、(1)を$y^2$に関する2次方程式とみて解けば、$y^2$≧0 であるので、
$y^2$=$\boxed{\ \ カ\ \ }$+$4\sqrt{\boxed{\ \ キ\ \ }}$ ...(2)
となり、また$x$のとりうる値の範囲は
$-\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$
となる。$x$≧0, $y$≧0とすれば、方程式(2)は0≦$x$≦$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$を定義域とする$x$の関数$y$を定める。このとき、0<$x$$\boxed{\ \ サ\ \ }$のとき共有点はなく、0≦$a$≦$\boxed{\ \ サ\ \ }$のとき共有点がある。
共有点の個数は、$a$=0のとき$\boxed{\ \ シ\ \ }$個、0<$a$<$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ ス\ \ }$個、$a$=$\boxed{\ \ サ\ \ }$のとき$\boxed{\ \ セ\ \ }$個となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ カ\ \ }$、$\boxed{\ \ キ\ \ }$の解答群
⓪$x^2+1$ ①$-(x^2+1)$ ②$x^2-1$ ③$-(x^2-1)$ ④$x^2+4$ 

⑤$2(x^2+4)$ ⑥$x^2-4$ ⑦$2(x^2-4)$ ⑧$-(x^2+4)$ ⑨$-2(x^2-4)$ 
この動画を見る 

大学入試問題#昭和大#604「nの計算丁寧に」 昭和大学医学部(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^2(1-x)^n dx$
$n$自然数

出典:2014年昭和大学 入試問題
この動画を見る 

愛媛大 三次関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値が$f(2)$になるような$a$の範囲を求めよ


出典:1998年愛媛大学 過去問
この動画を見る 
PAGE TOP