問題文全文(内容文):
$\displaystyle \lim_{x\to\frac{\pi}{2}} \dfrac{1-\cos(1-\sin x)}{\cos^4x}$
これを解け.
$\displaystyle \lim_{x\to\frac{\pi}{2}} \dfrac{1-\cos(1-\sin x)}{\cos^4x}$
これを解け.
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\frac{\pi}{2}} \dfrac{1-\cos(1-\sin x)}{\cos^4x}$
これを解け.
$\displaystyle \lim_{x\to\frac{\pi}{2}} \dfrac{1-\cos(1-\sin x)}{\cos^4x}$
これを解け.
投稿日:2021.01.04





