【箱ひげ図の箱】四分位数は怖くない。【数学】【中学2年、高校】 - 質問解決D.B.(データベース)

【箱ひげ図の箱】四分位数は怖くない。【数学】【中学2年、高校】

問題文全文(内容文):
四分位数の解説動画です
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
四分位数の解説動画です
投稿日:2021.03.03

<関連動画>

慶應義塾 解と係数の関係・対数方程式 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#解と判別式・解と係数の関係#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題

[1]$ x ^ 2 - x + 1 = 0$ の解をα、$x^2+x-1=0$の解をβとする。
(1)$α^n=1$となる最小のnを求めよ。
(2)αβは、$x^4+▢x^3+▢x^2+▢x+▢=0$の解である。
(3)上記の4次方程式の4つの解の平方の和 を求めよ。

[2]以下の連立方程式を解け、
\begin{eqnarray}
\left\{
\begin{array}{l}
log_2(x + y) + log_2(1 - x) = 0 \\
y = - x ^ 2 + 4x + 1
\end{array}
\right.
\end{eqnarray}

・Q 慶應大学医学部の初代医学部長は は何を発見したことで有名か?
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標平面上の四角形ABCDは以下の条件を満たすとする。\\
(\textrm{a})頂点Aの座標は(-1,-1)である。\\
(\textrm{b})四角形の各辺は原点を中心とする半径1の円と接する。\\
(\textrm{c})\angle BCDは直角である。\\
また、辺ABの長さをlとし、\angle ABC=\thetaとする。\\
\\
(1)\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}である。\\
\\
(2)辺CDの長さが\frac{5}{3}であるとき、l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}\ である。\\
\\
(3)\thetaは鋭角とする。四角形ABCDの面積が6であるとき、l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}\ ,\ \\
\\
\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}である。\\
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

確率×整数問題!さいころの目の最小公倍数や最大公約数【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。1個のさいころを続けて$n$回投げる試行を行い,出た目を順に$X_1,X_2,・・・,X_n$とする。

(1)$X_1,X_2,・・・,X_n$の最大公約数が3となる確率を$n$の式で表せ。

北海道大過去問
この動画を見る 

因数分解 たすきがけ

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解のたすきがけです.
$48x^2-37x-36$
この動画を見る 

2023高校入試解説9問目 和と差の積は二乗の差 日大習志野

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(1+\sqrt 2)(1+\sqrt 8)(1-\frac{1}{\sqrt 2})(1-\frac{1}{\sqrt 8})$

2023日本大学習志野高等学校
この動画を見る 
PAGE TOP