中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操 - 質問解決D.B.(データベース)

中学からの極限(発展編)~全国入試問題解法 #shorts #数学 #極限 #頭の体操

問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
投稿日:2024.01.21

<関連動画>

【何に近づくのか?】x → a の場合①:中学からの極限~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#関数と極限#関数の極限#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{x \to 1}\dfrac{ax-1}{x-a}$を求めよ.
この動画を見る 

【数Ⅲ】【関数】垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1, △CA1A2, △CA2A3,…の面積の総和が△ABCの面積を超えないためには∠Cの大きさはどんな範囲にあればよいか

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のような直角三角形ABCの直角の頂点Aから、
順に、垂線AA1, A1A2 ,A2A3, …を下ろすとき、△CAA1,
△CA1A2, △CA2A3,…の面積の総和が△ABCの面積を
超えないためには、∠Cの大きさはどんな範囲に
あればよいか。
この動画を見る 

【数Ⅲ】【関数と極限】nは自然数とし、h>0のとき、不等式(1+h)^n≧1+nh+n(n-1)/2・h²が成り立つ。このことを用いて、数列{n/3^n}の極限を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは自然数とし、h>0のとき、
不等式$(1+h)^n≧1+nh+\dfrac{n(n-1)}{2}・h²$が成り立つ。
このことを用いて、数列$\dfrac{n}{3^n}$の極限を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2023年医学部第2問〜定積分で表された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数、aを正の定数とする。関数f(x)は等式
$f(x)=x+\displaystyle\frac{1}{n}\int_0^xf(t)dt$
を満たし、関数g(x)は$g(x)$=$ae^{-\frac{x}{n}}+a$とする。2つの曲線y=f(x)とy=g(x)はある1点を共有し、その点における2つの接線が直交するとき、次の問いに答えよ。ただし、eは自然対数の底とする。
(1)h(x)=$e^{-\frac{x}{n}}f(x)$とおくとき、導関数h'(x)とh(x)を求めよ。
(2)aをnを用いて表せ。
(3)2つの曲線y=f(x), y=g(x)とy軸で囲まれた部分の面積を$S_n$とするとき、
極限値$\displaystyle\lim_{n \to \infty}\frac{S_1+S_2+\cdots+S_n}{n^3}$ を求めよ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

京都大 合成関数 不等式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \geqq 2,f(x)=(x+a)(x+2)$
$f(f(x)) \gt 0$がすべての実数$x$に対して成り立つような$a$の範囲を求めよ

出典:2013年京都大学 過去問
この動画を見る 
PAGE TOP