中学生の知識でオイラーの公式を理解しよう Vol 9 - 質問解決D.B.(データベース)

中学生の知識でオイラーの公式を理解しよう Vol 9

問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 9
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式を理解しよう Vol 9
投稿日:2017.07.08

<関連動画>

大学入試問題#416「工夫して計算」 早稲田大学2008 #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x$:実数
$x^3+\displaystyle \frac{1}{x^3}=52$を満たすとき
$x^4+\displaystyle \frac{1}{x^4}$の値を求めよ

出典:2008年早稲田大学 入試問題
この動画を見る 

山梨大 2次方程式と複素数平面

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#複素数平面#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-2kx+k=0$は実数解なし
2つの解$\alpha,\beta$と1を複素中面で結ぶと正三角形となる。
$k$の値を求めよ

出典:2000年山梨大学 過去問
この動画を見る 

鹿児島(医)慶應(理) 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#複素数平面#集合と命題(集合・命題と条件・背理法)#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鹿児島大学過去問題・類慶応義塾大学
二つの整数の平方の和で表される数
全体からなる集合をA
・x,yが集合Aの要素であるとき、積xyも集合Aの要素であることを証明せよ
・5および$5^5$は集合Aの要素であることを示せ
この動画を見る 

福田の数学〜北海道大学2023年理系第1問〜複素数平面上の図形の列

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#関数と極限#複素数平面#図形への応用#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 複素数平面上における図形$C_1$, $C_2$, ...,$C_n$, ...は次の条件(A)と(B)を満たすとする。ただし、$i$は虚数単位とする。
(A)$C_1$は原点Oを中心とする半径2の円である。
(B)自然数nに対して、zが$C_n$上を動くとき2w=z+1+$i$で定まるwの描く図形が$C_{n+1}$である。
(1)すべての自然数nに対して、$C_n$は円であることを示し、その中心を表す複素数$\alpha_n$と半径$r_n$を求めよ。
(2)$C_n$上の点とOとの距離の最小値を$d_n$とする。このとき、$d_n$を求めよ。
また、$\displaystyle\lim_{n \to \infty}d_n$を求めよ。

2023北海道大学理系過去問
この動画を見る 

横浜市立大(医)

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け

出典:2000年横浜市立大学 過去問
この動画を見る 
PAGE TOP