福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年理工学部第3問〜四面体の内部に出来る八面体の体積

問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点O, A, B, Cを頂点とする四面体OABCを考える。辺OA, OB, OCの中点をそれぞれP, Q, Rとし、辺BC, CA, ABの中点をそれぞれS, T, Uとする。
(1)辺PS, QT, RUが1点で交わることを示せ。
(2)$OA^2$+$BC^2$=$OB^2$+$CA^2$=$OC^2$+$AB^2$ のとき、点P, Q, R, S, T, Uが同一球面上にあることを示せ。
(3)(2)において、辺PSが辺OA, BCと直交するとし、辺OA, BCの長さをそれぞれ$a$, $k$とする。点P, Q, R, S, T, Uを頂点とする八面体の体積$V$を$a$と$k$を用いて表せ。
(4)(3)において、$k$=1のとき八面体の体積$V$の最大値を求めよ。
投稿日:2024.05.11

<関連動画>

福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【FULL】定期テスト直前対策!ベクトル解説動画フルパック流し【数B(新課程 数C)】

アイキャッチ画像
単元: #平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルのまとめ動画です。
ベクトルの基本から球面・平面の方程式まで
見たい内容のシーンをチャプターから選んで下さい!!
この動画を見る 

【数B】ベクトル:ベクトルの基本⑲空間ベクトルにおける三角形の面積

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A$(-2,1,3),B=(-3,1,4),C=(-3,3,5)$が与えられたとき、三角形ABCの面積を求めよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題088〜一橋大学2018年度文系第4問〜四面体の体積の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ p,qを正の実数とする。原点をOとする座標空間内の3点P(p,0,0), Q(0,q,0), R(0,0,1)は$\angle$PRQ=$\frac{\pi}{6}$を満たす。四面体OPQRの体積の最大値を求めよ。

2018一橋大学文系過去問
この動画を見る 

【数C】空間ベクトル:四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。AP+2BP-7CP-3DP=0

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体ABCDに関し、次の等式を満たす点Pはどのような位置にある点か。
AP+2BP-7CP-3DP=0
この動画を見る 
PAGE TOP