問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
投稿日:2020.08.14