#1大学編入試験問題 電通大(2021) 重積分 変数変換 - 質問解決D.B.(データベース)

#1大学編入試験問題 電通大(2021) 重積分 変数変換

問題文全文(内容文):
$D:x^2+y^2 \leqq x$
$\displaystyle \int \displaystyle \int_{D}\ x\sqrt{ x }\ dx\ dy$を計算せよ。

出典:2021年電通大学編入試験
チャプター:

04:08~ 解答のみ掲載 約10秒間隔

単元: #積分とその応用#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$D:x^2+y^2 \leqq x$
$\displaystyle \int \displaystyle \int_{D}\ x\sqrt{ x }\ dx\ dy$を計算せよ。

出典:2021年電通大学編入試験
投稿日:2022.04.18

<関連動画>

大学入試問題#324 宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^3log(x^2+1)dx$

出典:2013年宮崎大学 入試問題
この動画を見る 

大学入試問題#568「素直に正面突破」 東京帝国大学(1968) #広義積分

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{ \infty } \displaystyle \frac{xe^{-x}}{(1+e^{-x})^2}\ dx$

出典:1938年東京帝国大学 入試問題
この動画を見る 

大学入試問題#250 福井大学(2012) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$を0以上の整数とする。
次の2つの条件をみたす関数$f_n(x)$を求めよ。
(ⅰ)$f_0(x)=e^x$
(ⅱ)$f_n(x)=\displaystyle \int_{0}^{x}(n+t)f_{n-1}(t)dt$

出典:2012年福井大学 入試問題
この動画を見る 

【高校数学】毎日積分77日目~47都道府県制覇への道~【⑳和歌山】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【和歌山大学 2023】
次の問いに答えよ。ただし、$\sqrt{3}>1.73$である。
(1)$ x=tant$の時,$\displaystyle \frac{1}{1+x^2}$を$cost$を用いて表せ。
(2) 定積分$\displaystyle \int_0^{\frac{1}{3}}\frac{1}{1+x^2}dx$を求めよ。
(3) すべての実数$x$に対して、$\displaystyle \frac{1}{1+x^2}≧1+ax^2$が成り立つような実数$a$の最大値を求めよ。
(4) 円周率は$3.07$より大きいことを示せ。
この動画を見る 

大学入試問題#515「この問題は結構有名?」 名古屋大学(2005) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{x\ \sin^3x}{4-\cos^2x} dx$

出典:2005年名古屋大学 入試問題
この動画を見る 
PAGE TOP