重積分⑥-2【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応) - 質問解決D.B.(データベース)

重積分⑥-2【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

問題文全文(内容文):
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
曲面$x^2+y^2=1$ $(z \geqq 0)$と平面z=2x、xy平面で囲まれた体積Vを求めよ。
投稿日:2020.11.02

<関連動画>

#関西大学2024#不定積分_40

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#関西大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x^2\cos \ 2x\ dx$
を解け.

2022関西大学過去問題
この動画を見る 

【数Ⅱ】微分法と積分法:一橋大学1989年 角度の最大

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=x^3$上の点$P(a,a^3)(a\gt 0)$における接線をlとし、lが再びCと交わる点をQとする。また、QにおけるCの接線をmとし、lとmがなす角を$\theta(0\lt\theta\lt \dfrac{\pi}{2})$とする。
(1)$\tan\theta$をaを用いて表せ。
(2)aが正の実数値をとりながら変化するとき、$\theta$を最大にするaの値、および、そのときの$\tan\theta$の値を求めよう。
この動画を見る 

大学入試問題#719「これは落としたくない」 早稲田大学商学部(2005) 3次方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3次方程式
$x^3-px^2+11x-q=0$が3つの連続する正の整数を解とするとき、$p,q$の値を求めよ。

出典:2005年早稲田大学商学部 入試問題
この動画を見る 

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第6問〜複素数平面上の点の軌跡と最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$は虚数単位とする。次の条件$(\textrm{I}),(\textrm{II})$のどちらも満たす複素数z全体の集合を
Sとする。
$(\textrm{I})z$の虚部は正である。
$(\textrm{II})$複素数平面上の点$A(1),B(1-iz),C(z^2)$は一直線上にある。
このとき、以下の問いに答えよ。
(1)1でない複素数$\alpha$について、$\alpha$の虚部が正であることは、$\frac{1}{\alpha-1}$の虚部が
負であるための必要十分条件であることを示せ。
(2)集合Sを複素数平面上に図示せよ。
(3)$w=\frac{1}{z-1}$とする。zがSを動くとき、$|w+\frac{i}{\sqrt2}|$の最小値を求めよ。

2022筑波大学理系過去問
この動画を見る 
PAGE TOP