数学「大学入試良問集」【12−3 極値と不等式の関係】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【12−3 極値と不等式の関係】を宇宙一わかりやすく

問題文全文(内容文):
$a$を実数とし、関数$f(x)=x^3-3ax+a$を考える。
$0 \leqq x \leqq 1$となるような$a$の値の範囲を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数とし、関数$f(x)=x^3-3ax+a$を考える。
$0 \leqq x \leqq 1$となるような$a$の値の範囲を求めよ。
投稿日:2021.05.22

<関連動画>

福田の1.5倍速演習〜合格する重要問題064〜明治大学2019年度理工学部第2問〜円と放物線の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。

2019明治大学理工学部過去問
この動画を見る 

【数Ⅱ】式と証明:恒等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。

$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²-2x+4y-11=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2-2x+4y-11=0$はどのような図形を表しているか?
この動画を見る 

福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第6問〜領域における最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ ある国の有識者会議が、経済活性化に資する公共サービスの$供給量x$と、医療・
公衆衛生に関する公共サービスの$供給量y$の組み合わせの検討を行っている。$供給量
(x,y)$は、予算やマンパワー、既存の法律など、さまざまな要因により、その実現可能性
に制約を受け、次の不等式を満たすものとする。
$\left\{\begin{array}{1}
2x+5y \leqq 405 \ldots(1)\\
x^2+75y \leqq 6075 \ldots(2)\\
x \geqq 0 \ldots(3)\\
y \geqq 0 \ldots(4)\\
\end{array}\right.$

$供給量(x,y)$を$x軸$と$y軸$の$2次元座標$で表すと、実現可能な供給量の組合せ$(x,y)$の値域は、$0 \leqq x \leqq \boxed{\ \ アイ\ \ }$の範囲で$(1)$と$(4)$を満たす$(x,y)$の部分の領域と、
$\boxed{\ \ アイ\ \ } \leqq x \leqq \sqrt{\boxed{\ \ オカ\ \ }}$の範囲で$(2)$と$(4)$を満たす$(x,y)$の部分の領域の$2$つ
からなることがわかる。
いま、有識者会議の目標が$xy$の最大化であるとすると、供給量の組合せを
$(x,y)=(\boxed{\ \ キク\ \ },\boxed{\ \ ケコ\ \ })$とする結論を得る。
次に、情勢の変化に伴って、上記の$(1),(2),(3),(4)$に新たな不等式
$x+y \leqq 93  \ldots(5)$
が加わったとすると、実現可能な$(x,y)$の領域は、$0 \leqq x \leqq \boxed{\ \ サシ\ \ }$の範囲で
$(1)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ サシ\ \ } \leqq x \leqq \boxed{\ \ スセ\ \ }$の範囲で
$(5)と(4)$を満たす$(x,y)$の部分の領域と、$\boxed{\ \ スセ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}$の範囲で
$(2)と(4)$を満たす$(x,y)$の部分の領域の$3つ$に分けることができる。
また、政府の方針にそって、有識者会議の目標が$x^2y$の最大化に変更されたとすると、
供給量の組合せを
$(x,y)=(\boxed{\ \ ソタ\ \ },\boxed{\ \ チツ\ \ })$
とする結論を導くことになる。

2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP