問題文全文(内容文):
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
単元:
#数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
$\frac{d^2x}{dt^2}=-2\frac{dx}{dt}$
(1)$x=c_1e^{-2t}+c_2$ $(c_1,c_2:定数)$
は一般解であることを示せ
(2)t=0のときx=1,$\frac{dx}{dt}=2$をみたす解を求めよ
(3)t=0のときx=0
t=1のときx=1
をみたす解を求めよ。
投稿日:2020.12.11