【高校数学】 数B-55 空間における平面・直線の方程式③ - 質問解決D.B.(データベース)

【高校数学】 数B-55 空間における平面・直線の方程式③

問題文全文(内容文):
①直線$\ell:x=-1+t,y=3+t,z=1+2t$上に点$P$がある.
線分$OP$が最小となる点$P$の座標を求めよう.

②2点$A(3,1,4),B(1,2,-1)$を通る直線上に点のうちで,
原点に最も近い点の座標を求めよう.
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①直線$\ell:x=-1+t,y=3+t,z=1+2t$上に点$P$がある.
線分$OP$が最小となる点$P$の座標を求めよう.

②2点$A(3,1,4),B(1,2,-1)$を通る直線上に点のうちで,
原点に最も近い点の座標を求めよう.
投稿日:2016.01.19

<関連動画>

【短時間でポイントチェック!!】ベクトルの内積〔現役講師解説、数学〕

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
$|\vec{ a }|=1,|\vec{ b }|=3,|\vec{ a }-\vec{ b }|=\sqrt{ 13 }$のとき、$\vec{ a }$と$\vec{ b }$のなす角$\theta$は?
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第2問(2)〜ベクトルの列とその絶対値の評価

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#対数関数#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ (2)ベクトルの列 $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, ..., $\overrightarrow{a_n}$, ...を条件
$\overrightarrow{a_1}$=(1,0), $\overrightarrow{a_2}$=$\left(\frac{1}{2}, \frac{\sqrt 3}{2}\right)$, $\overrightarrow{a_{n+2}}$=$\displaystyle\frac{\overrightarrow{a_{n+1}}・\overrightarrow{a_n}}{|\overrightarrow{a_n}|^2}\overrightarrow{a_n}$
で定める。このとき$\overrightarrow{a_9}$=$\left(\frac{\boxed{イ}}{\boxed{ウエオ}}, \boxed{カ}\right)$である。また、$|\overrightarrow{a_n}|$<$10^{-25}$を満たす最小の自然数$n$は$\boxed{キク}$である。ただし、必要であれば、$\log_{10}2$=0.301を近似として用いてよい。
この動画を見る 

【共テ数学IIB】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(指数・対数、微分積分、数列、ベクトル)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#指数関数と対数関数#微分法と積分法#指数関数#対数関数#数列#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共テ数学IIB】解答時間短縮、裏技集説明動画です。(指数・対数、微分積分、数列、ベクトル)
この動画を見る 

福田の数学〜早稲田大学2024社会科学部第2問〜三角形の内心と垂心の位置ベクトル

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$
\begin{eqnarray}
\fcolorbox{black}{ white }{$2$}OA = 6, \,OB = 5,\,AB=7である\triangle OABにおいて、\vec{a} \ = \ \vec{OA} , \ \vec{b} \ = \ \vec{OB}とおく。
\end{eqnarray}
$
$
\begin{eqnarray}
(1)\triangle OABの内心を1、辺ABと直線OIの交点をCとする。\vec{OC}を\vec{a}, \ \vec{b}で表せ。
\end{eqnarray}
$
$
\begin{eqnarray}
(1) \vec{OI}を \vec{a}, \ \vec{b}で表せ。
\end{eqnarray}
$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 
PAGE TOP