大学入試問題#269 横浜市立大学医学部(2010) #極限 #定積分 - 質問解決D.B.(データベース)

大学入試問題#269 横浜市立大学医学部(2010) #極限 #定積分

問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{1}^{R^2}\displaystyle \frac{e^{-\sqrt{ x }}}{2}dx$

出典:2010年横浜市立大学 医学部 入試問題
チャプター:

00:00 問題掲示
00:19 本編スタート
05:17 作成した解答①の掲載
05:29 作成した解答②の掲載
05:40 エンディング(楽曲提供:兄いえてぃ様)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{1}^{R^2}\displaystyle \frac{e^{-\sqrt{ x }}}{2}dx$

出典:2010年横浜市立大学 医学部 入試問題
投稿日:2022.08.02

<関連動画>

大学入試問題#540「これは平均点の調整すらならないような」 京都大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \sqrt{ x }\ log(x^2)\ dx$

出典:2023年京都大学 入試問題
この動画を見る 

福井大 漸化式と整数問題の融合

アイキャッチ画像
単元: #数Ⅰ#整数の性質#約数・倍数・整数の割り算と余り・合同式#漸化式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
この動画を見る 

大学入試問題#376「平均点の調整問題?」 奈良県立医科大学(2015) #積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=5+2\displaystyle \int_{0}^{1}e^{t-x}f(t)dt$をみたす$f(x)$を求めよ。

出典:2015年奈良県立医科大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

各大学で頻出の典型的な問題!基本的でありながらどの大学でも出題されます【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを実数とする。曲線y=e^x上の各点における法線のうちで、点p(a,3)を通るものの個数をn(a)とする。n(a)を求めよ。
この動画を見る 
PAGE TOP