大学入試問題#269 横浜市立大学医学部(2010) #極限 #定積分 - 質問解決D.B.(データベース)

大学入試問題#269 横浜市立大学医学部(2010) #極限 #定積分

問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{1}^{R^2}\displaystyle \frac{e^{-\sqrt{ x }}}{2}dx$

出典:2010年横浜市立大学 医学部 入試問題
チャプター:

00:00 問題掲示
00:19 本編スタート
05:17 作成した解答①の掲載
05:29 作成した解答②の掲載
05:40 エンディング(楽曲提供:兄いえてぃ様)

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{1}^{R^2}\displaystyle \frac{e^{-\sqrt{ x }}}{2}dx$

出典:2010年横浜市立大学 医学部 入試問題
投稿日:2022.08.02

<関連動画>

大学入試問題#782「もう何回目だろうか」 横浜市立大学(2004) #区分求積法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$

出典:2004年横浜市立大学 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2024年医学部第1問(3)〜三角関数の増減とグラフと面積

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(3) 関数$y$=$\cos x\sin 2x$ $\left(0≦x≦\displaystyle\frac{\pi}{2}\right)$の最大値は$\boxed{\ \ (け)\ \ }$である。また、この関数のグラフと$x$軸で囲まれてできる図形の面積は$\boxed{\ \ (こ)\ \ }$である。
この動画を見る 

近畿大 展開 係数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$

(1)
$x^7$の係数

(2)
$x^6$の係数

出典:2012年近畿大学 過去問
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(2)〜正八面体に内接する立方体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#立体図形#立体切断#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)$a$は$a\gt 0$を満たす実数とする。

$xyz$空間に$6$点$(a,0,0),(0,a,0),(0,0,a),$

$(-a,0,0)(0,-a,0)(0,0,-a)$を頂点とする多面体

$S$がある。

(i)$S$の体積は$\boxed{オ}$である。

(ii)立方体$U$のすべての頂点が$S$の辺上にあるとき、

$U$の体積は$\boxed{カ}$である。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

徳島大(医)放物線の法線

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=x^2$上の$P(t,t^2)(t\gt 0)$における法線と$C$との交点を$Q(\neq P)$とする.
$PQ$の最小値を求めよ.

2020徳島大(医)過去問
この動画を見る 
PAGE TOP