微分方程式②【微分方程式の解】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式②【微分方程式の解】(高専数学、数検1級)

問題文全文(内容文):
$\frac{dx}{dt}=x+e^{2t}$
(1)$x=e^{2t}$が解
(2)$x=e^{2t}+ce^t$が一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\frac{dx}{dt}=x+e^{2t}$
(1)$x=e^{2t}$が解
(2)$x=e^{2t}+ce^t$が一般解
cは任意定数
(3)t=0,x=-1をみたす特殊解を求めよ。
投稿日:2020.12.03

<関連動画>

練習問題38 数検1級1次 高専数学 積分順序の変更

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#不定積分・定積分#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a\gt 0$とする.
$\displaystyle \int_{0}^{a} dx \displaystyle \int_{0}^{x^2} f(x,y)dy$
の積分順序の変更をせよ.
この動画を見る 

微分方程式⑪-2【非線形2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$(y+1)\dfrac{d^2y}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$y\dfrac{d^2y}{dx^2}=1-\left(\dfrac{dy}{dx}\right)^2$
この動画を見る 

#67数学検定1級1次「こんな問題で時間使いたくない」 #因数分解

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)$を因数分解せよ

出典:数検1級1次
この動画を見る 

練習問題43 区分求積法 数検1級1次 教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\sqrt[ n ]{ {}_{ 2n } P_n }$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$
この動画を見る 

重積分⑩-3【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:1 \leqq x^2+y^2 \leqq 4$
$Z= \sqrt{x^2+y^2}$
D上の曲面Zの面積Sを求めよ。
この動画を見る 
PAGE TOP