広島大 対数の証明問題 - 質問解決D.B.(データベース)

広島大 対数の証明問題

問題文全文(内容文):
$p,q$を異なる自然数とするとき、
$P log_2 3$と$q log_2 3$の小数部分は異なることを証明せよ。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$を異なる自然数とするとき、
$P log_2 3$と$q log_2 3$の小数部分は異なることを証明せよ。
投稿日:2023.06.07

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)関数f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}とg(x)=\log_9(3x^2-2)の定義域をそれぞれ\\
集合A,Bで表すと、A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }\ を満たす実数\right\}である。\\
実数xが集合A\cap Bの要素であるとき、f(x)+g(x) \lt 0となるための条件は\\
\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }またはx \gt \boxed{\ \ キ\ \ }となることである。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
この動画を見る 

対数の基本性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを簡単にせよ.$a,b,c$を正とし,$a,b,c \neq 1$である.
$\dfrac{1}{1+\log_a bc}+\dfrac{1}{1+\log_b ca}+\dfrac{1}{1+\log_c ab}$
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3^{\sqrt5}$ VS $ 5^{\sqrt3}$ どちらが大きいか?
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(1)〜対数計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)$\log_3\sqrt6\ -\log_3\frac{2}{3}+\log_3\sqrt2\ $を有理数で表すと$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 
PAGE TOP