【高校受験対策】数学-図形20 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形20

問題文全文(内容文):
右の図のように、$BC = 2cm 、 AC = 3cm 、\angle ACB = 60°$の
三角形$ABC$と、$DC =\sqrt3 cm 、\angle BDC = 90°$の直角三角形$BDC$がある。
点$P$が辺$BC$上を動くとき、次の各問いに答えなさい。

①$AP+PD$が最も長くなるとき、$AP+PD$の長さを求めなさい。

②$AP+PD$が最も短くなるとき、$AP+PD$の長さを求めなさい。

③点$P$が辺$BC$の中点であるとき、$AP+PD$の長さを求めなさい。

④$AP+PD=4cm$となるとき、$AP$の長さを求めなさい。


図は動画内参照
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、$BC = 2cm 、 AC = 3cm 、\angle ACB = 60°$の
三角形$ABC$と、$DC =\sqrt3 cm 、\angle BDC = 90°$の直角三角形$BDC$がある。
点$P$が辺$BC$上を動くとき、次の各問いに答えなさい。

①$AP+PD$が最も長くなるとき、$AP+PD$の長さを求めなさい。

②$AP+PD$が最も短くなるとき、$AP+PD$の長さを求めなさい。

③点$P$が辺$BC$の中点であるとき、$AP+PD$の長さを求めなさい。

④$AP+PD=4cm$となるとき、$AP$の長さを求めなさい。


図は動画内参照
投稿日:2018.01.27

<関連動画>

【とても大切…!】図形:国立高等専門学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$底面の半径が2cm、高さ4\sqrt{2}cmの円錐がある。$
$底面の円周上の一点から側面に沿って一周するように糸を書ける$
$この糸が最短となるときの長さは\boxed{  }cmである。$
この動画を見る 

【テスト対策 中1】4章-4

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$y$は$x$に比例し、$x = 3$のとき$y=6$である。
また、$x$の変域が$-4≦ x \leqq 3$のとき、その変域は$a\leqq y\leqq b$である。
$a、b$の値を求めよ。

②$y$は$x$に比例し、$ x = 2$ のとき$y=-5$である。
また、$x$の変域が$-6≦x≦-4$のとき、 $y$の変域を求めなさい。

③$y$は$x$に反比例し、$x=-4$のとき$y=-6$である。
また、$x$の変域が$2≦x≦4$のとき、$y$の変域を求めなさい。
この動画を見る 

テクニカルに解け 比例式 立命館高校

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a+b}{2} = \frac{b+c}{3} = \frac{c+a}{4} $
$\frac{b}{a} + \frac{c}{b} + \frac{a}{c} = ?$

立命館高等学校
この動画を見る 

2023高校入試数学解説95問目 回転体の体積 茨城県

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
APを軸として△APQで1回転させてできる立体の体積は?
*図は動画内参照

2023茨城県
この動画を見る 

【中学数学】正の数,負の数の文章問題演習 1-2.5【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$
\begin{align}
& (1) \ 基準となる地点Aから西へ5\mathsf{m}の地点のことを+5\mathsf{m}と表すとき、次の①,\,②はどの地点か。\\
& ①\ +13\mathsf{m} \ ②\ -5\mathsf{m}
\\\\
& (2) \ 基準となる地点Aから北へ1\mathsf{m}の地点のことを+1\mathsf{m}と表すとき、次の①,\,②はどの地点か。\\
& ①\ +7.3\mathsf{m} \ ②\ -3.3\mathsf{m}
\\\\
& (3) \ 山の標高を高尾山の標高599\mathsf{m}を基準にして、それよりも標高が高いときは正の符号を、低いときは負の符号を使って表せ。\\
& ①大山\ +1252\mathsf{m} \ ②宝登山 \ 497\mathsf{m}
\end{align}
$
この動画を見る 
PAGE TOP