【残り9日】共テ数学IAの全大問解説、まとめました【流し見OK】 - 質問解決D.B.(データベース)

【残り9日】共テ数学IAの全大問解説、まとめました【流し見OK】

問題文全文(内容文):
共通テスト数学IAの全大問解説、まとめ動画です
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学IAの全大問解説、まとめ動画です
投稿日:2024.01.04

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。

(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。

$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$  ①$\frac{\sqrt3}{4}$  ②$\frac{\sqrt3}{80}$  ③$\frac{3}{40}$ 

$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209   ①0.251   ②0.286   ③0.395

(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。

花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから

$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。

$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36

2022共通テスト数学過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第4問〜整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
正の整数$m$に対して
$a^2+b^2+c^2+d^2=m, $$a \geqq b \geqq c \geqq d \geqq 0$ $\cdots$①
を満たす整数$a,b,c,d$の組がいくつあるかを考える。

(1)$m=14$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$

$(\boxed{\ \ ア\ \ }, \boxed{\ \ イ\ \ }, \boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ })$
のただ一つである。
また、$m=28$のとき、①を満たす整数$a,b,c,d$の組の個数は
$\boxed{\ \ オ\ \ }$個である。

(2)$a$が奇数のとき、整数$n$を用いて$a=2n+1$と表すことができる。
このとき、$n(n+1)$は偶数であるから、次の条件が全ての奇数$a$で成り立つ
ような正の整数$h$のうち、最大のものは$h=\boxed{\ \ カ\ \ }$である。

条件:$a^2-1$は$h$の倍数である。

よって、$a$が奇数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは$1$である。
また、$a$が偶数の時、$a^2$を$\boxed{\ \ カ\ \ }$で割った時の余りは、$0$または$4$の
いずれかである。

(3)(2)により、$a^2+b^2+c^2+d^2$が$\boxed{\ \ カ\ \ }$の倍数ならば、整数$a,b,c,d$
のうち、偶数であるものの個数は$\boxed{\ \ キ\ \ }$個である。

(4)(3)を用いることにより、$m$が$\boxed{\ \ カ\ \ }$の倍数であるとき、①を満たす整数
$a,b,c,d$が求めやすくなる。
例えば、$m=224$のとき、①を満たす整数$a,b,c,d$の組$(a,b,c,d)$は
$(\boxed{\ \ クケ\ \ }, \boxed{\ \ コ\ \ }, \boxed{\ \ サ\ \ }, \boxed{\ \ シ\ \ })$
のただ1つであることが分かる。

(5)7の倍数で896の約数である正の整数$m$のうち、①を満たす整数$a,b,c,d$
の組の個数が$\boxed{\ \ オ\ \ }$個であるものの個数は$\boxed{\ \ ス\ \ }$個であり、
そのうち最大のものは$m=\boxed{\ \ セソタ\ \ }$である。

2021共通テスト過去問
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第2問(1)2次関数〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します

2024共通テスト過去問
この動画を見る 

共通テスト出題予想2024_ココが出ます【地歴公民・数学・英語・国語】

アイキャッチ画像
単元: #共通テスト#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#共通テスト#共通テスト(古文)#数学(高校生)#大学入試解答速報#数学#共通テスト#英語#共通テスト#世界史#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト出題予想2024【地歴公民・数学・英語・国語】
この動画を見る 

【爆速】数学1A解説!!大問4【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 3rd School
問題文全文(内容文):
数学1A 大問4解説動画です
この動画を見る 
PAGE TOP