中学受験算数「水面の高さと変化のグラフ②」小学4年生~6年生対象【毎日配信】 - 質問解決D.B.(データベース)

中学受験算数「水面の高さと変化のグラフ②」小学4年生~6年生対象【毎日配信】

問題文全文(内容文):
例題
図1のような直方体の容器の中に長方形のしきりがあります。
図2は、この容器に水を入れたときの時間とアの水の深さを表したものです。

(1)水は1分間に何㎤入れましたか。
(2)イの部分のしきりの高さまでの容積は何㎤ですか。
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
図1のような直方体の容器の中に長方形のしきりがあります。
図2は、この容器に水を入れたときの時間とアの水の深さを表したものです。

(1)水は1分間に何㎤入れましたか。
(2)イの部分のしきりの高さまでの容積は何㎤ですか。
投稿日:2020.08.26

<関連動画>

【高校受験対策】数学-死守24

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#円#立体図形#立体切断#立体図形その他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-7+9$を計算しなさい.

②$1+\left(-\dfrac{5}{6}\right)\div \dfrac{1}{3}$を計算しなさい.

③$8(x - y) + 6(x - 2y)$を計算しなさい.

④$\sqrt{27} - \dfrac{6}{\sqrt3}$を計算しなさい.

⑤$x(x + 2) - (x + 4)(x - 3)$を計算しなさい.

⑥絶対値が$2.5$より小さい整数はいくつあるか,求めなさい.

⑦2つの方程式$3x + y = 11$と$x + 3y = 1$両方にあてはまる$x,y$の値の組がある.
このとき,$x^2-y^2$の値を求めなさい.

⑧右の図のおうぎ形$OAB$は,半径$3cm$,中心角$90°$である.
このおうぎ形$OAB$を, $AD$を通る直線$\ell$を軸として1回転させてできる
立体の体積と表面積を求めなさい.
ただし,円周率は$\pi$とする.

⑨右の表は,ある中学校における男子15人の50m走の記録を
度数分布表に表したものである.
この表の8.5秒以上9.0秒未満の階級の相対度数を求めなさい.

図は動画内参照
この動画を見る 

中学受験 算数 洛南高校附属中学

アイキャッチ画像
単元: #算数(中学受験)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#過去問解説(学校別)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x=?$
*図は動画内参照

洛南高等学校附属中学校
この動画を見る 

この計算方法知ってる?

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#その他#その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
かたかた算 説明動画です
$11 \times 18=??$
$12 \times 15=??$
$12 \times 14=??$
この動画を見る 

【受験算数】長方形ABCDの辺AD上を点Pが、辺BC上を点Qが往復します。Pは秒速2cm、Qは秒速 3cm。Pは頂点Aから、Qは頂点Bから同時に出発。四角形ABPQがはじめて長方形になるのは何秒後?

アイキャッチ画像
単元: #算数(中学受験)#速さ#点の移動・時計算
教材: #Gn#Gn5年算数#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
長方形ABCDの辺AD上を点Pが、辺BC上を点Qが往復します。Pは秒速2cm、Qは秒速 3cmで進みます。いま、Pは頂点Aから、Qは頂点Bから同時に出発しました。
(1)四角形ABPQの面積がはじめて長方形ABCDの面積の半分になるのは何秒後ですか。
(2)四角形ABPQがはじめて長方形になるのは何秒後ですか。
この動画を見る 

福田の数学〜早稲田大学理工学部2025第4問〜4つの互いに外接する球面の中心が作る四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

空間内に原点$O$を中心とする半径$r$の球面$S$がある。

さらに、半径が$1,2,3$の球面$S_1,S_2,S_3$があり、

これら$4$つの球面のうち

どの$2$つの球面も互いに外接している。

$S_1,S_2,S_3$中心を順に$P_1,P_2,P_3$とし、

$O,P_1,P_2,P_3$は同一平面上にないとする。

さらに、球面$S$が球面$S_1,S_2,S_3$と

接する$3$つの点と、

$\overrightarrow{OQ}=\dfrac{1}{4}(\overrightarrow{OP_1}+\overrightarrow{OP_2}+\overrightarrow{OP_3})$

により定まる点$Q$は、同一平面上にあるとする。

次の問いに答えよ。

(1)$r$の値を求めよ。

(2)四面体$OP_1P_2P_3$の体積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 
PAGE TOP