高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題

問題文全文(内容文):
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.

$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?

$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#相似な図形#文章題#文章題その他#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.

$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?

$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
投稿日:2023.02.25

<関連動画>

【中1 数学】中1-88 近似値

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①~⑪を求めよ。
◎有効数字と有効数字のけた数は?
①$5,2 \times 10^3$
②$7,25 \times 10^4$
③$1,90 \times 10^3$

◎次の測定値を有効数字$3$けたで表すと?
④$2843m$
⑤$34570g$
⑥$82951730km$

◎次の測定値は何の位まで測定したもの
⑦$9,24 \times 10^2g$
⑧$1,40 \times 10^3m$

◎真の値$125,6㎡$を$124,8㎡$と測定しました。
⑨このときの誤差は?

◎ある数の$a$を()の位で四捨五入して近似値をだしました。
$a$の範囲を不等号を使って書こう!!
⑩$329$(小数第$1$位)
⑪$5、6$(小数第$2$位)
この動画を見る 

気付けば一瞬!!正方形の面積

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 数学を数楽に
問題文全文(内容文):
AE=4
正方形ABCDの面積=?
*図は動画内参照
この動画を見る 

【高校受験対策】数学-図形19

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図1の立体は、$AB=6cm、 AD = 2cm 、 AE = 4cm$の直方体である。
このとき、次の問に答えなさい。

①辺$AB$とねじれの位置にあり、面$ABCD$と平行である辺はどれか、すべて答えなさい。

②図2のように、面$EFGH$の対角線$EG、HF$の交点を$I$とする。
$\triangle DHI$を、辺$DH$を軸として1回転させてできる円すいの母線の長さを求めなさい。
(図3のように、$AB、BF$上の点をそれぞれ$P、Q$とする)

③図3において、$DP+PQ+QG$が最小となるときの
$DP+PQ+QC$の値を求めなさい。

④図3において、$DP+PQ+QG$が最小となるときの、
三角すい$BPQC$の体積を求めなさい。

図は動画内参照
この動画を見る 

【裏技】知ってないのヤバいレベル

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内の図の表面積を求めよ
この動画を見る 

【中学数学】四則演算の総復習【中1夏期講習①】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle (1)\,
(-2)^3 \times 7 - (-3)^2 \times 5
$
$\displaystyle (2)\,
(5 - 17) \div (11 - 5) - \{2 \times (-3) - 3\}
$
$\displaystyle (3)\,
(3^2 - 7) \times 6 + \{(2 - 5)^2 + 11\}
$
$\displaystyle (4)\,
(-\frac{3}{2}) \times (- \frac{4}{9}) + \frac{2}{3} \times \frac{7}{4}
$
$\displaystyle (5)\,
(\frac{1}{2} + \frac{1}{3}) \div (-\frac{5}{12}) + (\frac{2}{3} + \frac{5}{6}) \times \frac{14}{15}
$
$\displaystyle (6)\,
\{(\frac{3}{2})^3 + 1 \} \times \frac{4}{5} + ( \frac{1}{2} + \frac{1}{4}) \times \frac{2}{5}
$
$\displaystyle (7)\,
-6 \times \{14 \div (5 - 7) \}
$
$\displaystyle (8)\,
8 - (-2)^2 \times (-5) + (-3)
$
この動画を見る 
PAGE TOP