【高校受験対策】数学-図形25 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形25

問題文全文(内容文):
1辺の長さが$4cm$の正方形$ABCD$がある。同1・間2に答えなさい。

問1
右の図のように、点$P$が$A$を出発し、正方形$ABCD$の周上を、 毎秒$1cm$の速さで$B$、$C$を通って$D$まで移動する。
(1)(2)に 答えなさい。

(1)点$P$が$A$を出発してから6秒後の線分$AP$の長さを求めなさい。

(2) 点$P$が$CD$上にあり、四角形$ABCP$の面積が$10cm^2$となるのは、点$P$が$A$を出発してから何秒後か、求めなさい。


問2
下の図のように、正方形$ABCD$の外側に、正三角形$ABE$と$\angle CBF=90°$の直角三角形$BCF$をつくる。
辺$CF$の中点を$M$とし、$BF=4\sqrt{3}cm$であるとき、(1)・(2)に答えなさい。

(1)$△BDE$の面積を求めなさい
(2)線分$BM$と線分$DF$の交点を$Q$とするとき、$BQ:QM$を求めなさい。
単元: #数学(中学生)#中3数学#三平方の定理
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1辺の長さが$4cm$の正方形$ABCD$がある。同1・間2に答えなさい。

問1
右の図のように、点$P$が$A$を出発し、正方形$ABCD$の周上を、 毎秒$1cm$の速さで$B$、$C$を通って$D$まで移動する。
(1)(2)に 答えなさい。

(1)点$P$が$A$を出発してから6秒後の線分$AP$の長さを求めなさい。

(2) 点$P$が$CD$上にあり、四角形$ABCP$の面積が$10cm^2$となるのは、点$P$が$A$を出発してから何秒後か、求めなさい。


問2
下の図のように、正方形$ABCD$の外側に、正三角形$ABE$と$\angle CBF=90°$の直角三角形$BCF$をつくる。
辺$CF$の中点を$M$とし、$BF=4\sqrt{3}cm$であるとき、(1)・(2)に答えなさい。

(1)$△BDE$の面積を求めなさい
(2)線分$BM$と線分$DF$の交点を$Q$とするとき、$BQ:QM$を求めなさい。
投稿日:2019.02.01

<関連動画>

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

√9の平方根は?

アイキャッチ画像
単元: #数学(中学生)#中3数学
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
√9の平方根を求めて下さい。
この動画を見る 

【中学数学】2次関数の演習~京都府公立高校入試前期選抜2019~【高校受験】

アイキャッチ画像
単元: #中3数学#2次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
動画内図のように、関数$y=ax^2$のグラフ上に2点A,Bがあり、2点A,Bの$x$座標はそれぞれ-3,6である。
また、2点0,Bを通る直線の傾きは$\displaystyle \frac{3}{2}$である。
2点A、Bを通る直線と$y$軸との交点をCとする。

(1) aの値を求めよ。

(2) 直線ABの式を求めよ。

(3) $x$軸上に$x$座標が正である点Dをとる。
  点Dを通り、傾きが$\displaystyle \frac{6}{25}$である直線を$y$軸との交点をEとする。
  △OCA=△OEDであるとき、2点D,Eの座標をそれぞれ求めよ。
この動画を見る 

【見た目に惑わされないで…】二次方程式:桐朋高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
2次方程式$\dfrac{x^2}{6}-\dfrac{x+5}{3}+\dfrac{1}{2}=0$を解け.

桐朋高等学校過去問
この動画を見る 

【迷いを捨てろ!何とかしよう!】因数分解:東京電機大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$2(x+1)(x+3)-(x+2)^2+1$を因数分解しなさい.

東京電機大高校過去問
この動画を見る 
PAGE TOP