福田のおもしろ数学354〜指数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学354〜指数方程式

問題文全文(内容文):
$2^x+3^x-4^x+6^x-9^x=1$ を満たす実数 $x$ をすべて求めて下さい。
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$2^x+3^x-4^x+6^x-9^x=1$ を満たす実数 $x$ をすべて求めて下さい。
投稿日:2024.12.21

<関連動画>

中学生向け指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを求めよ.
$10^{2n}-10^{n+2}+999=\overbrace{ 999\cdots +9}^{n+1桁}$
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第4問〜指数不等式と対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$p$を正の実数、$m$を自然数とし、

曲線$y=-x^2$上の点$(-p,-p^2)$における

接線と直線$y=2m$の交点を$P_m$とする。

$P_m$の$x$座標が$1$以下となる$m$の最大値を

$N$とする。

(1)$P_m$の$x$座標を、$p$と$m$を用いて表せ。

(2)$N=40$が成り立つ$p$の範囲を求めよ。

以下、$n$を自然数とし、

$a=3n\log_3 6-\log_2+n$とする。

(3)$3^a$は$2$以上の自然数である。

$3^a$の素因数分解を、$n$を用いて書け。

(4)$p=3^a$のとき、$N\lt 2^{1000}$となる

自然数$n$の最大値を求めよ。

なお、必要があれば$1.58 \lt \log_2 3 \lt 1.50$を用いよ。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)実数$a$が$2^a-2^{-a}=3$を満たしているとき、$2^a=\boxed{\ \ ウ\ \ }$であり、

$4^a-4^{-a}=\boxed{\ \ エ\ \ }$
である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

指数法則に従って手を動かすだけ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \left(x+\frac{1}{y} \right)^{-2}+\left(y+\frac{1}{x} \right)^{-2}=1$
$\left(x-\frac{1}{y} \right)^{-2}+\left(y-\frac{1}{x} \right)^{-2}=2$
$xy+\dfrac{1}{xy}$の値を求めよ.
この動画を見る 

イタリア数学オリンピック 整数問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数であり,m,nを自然数とする.
$p+q^2=m^2$なら$p^2+q^2$は平方数でないことを示せ.

イタリア数学オリンピック過去問
この動画を見る 
PAGE TOP