大学入試問題#166 東京大学 改 (2022) 定積分 - 質問解決D.B.(データベース)

大学入試問題#166 東京大学 改 (2022) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\cos\ x\ log(\cos\ x)dx$を求めよ。

出典:2022年東京大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\cos\ x\ log(\cos\ x)dx$を求めよ。

出典:2022年東京大学 入試問題
投稿日:2022.04.11

<関連動画>

【数Ⅲ】【積分とその応用】不定積分置換積分、部分積分2 ※問題文は概要欄

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#積分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不定積分を求めよ。
(1) $\displaystyle \int \frac{x^2+x+1}{x^2+1}~dx$
(2) $\displaystyle \int \frac{x^4}{x^2-1}~dx$


(1)次の等式が成り立つように、定数$a,b,c$の値を定めよ。
$\dfrac{3x+2}{x(x+1)^2}=\dfrac{a}{x}+\dfrac{b}{x+1}+\dfrac{c}{(x+1)^2}$

(2)不定積分$\displaystyle \int \dfrac{3x+2}{x(x+1)^2}~dx$を求めよ。


次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{x(x^2-1)}$
(2) $\displaystyle \int \frac{dx}{x^2(x+2)}$
(3) $\displaystyle \int \frac{dx}{x(x^2+1)}$
(4) $\displaystyle \int \frac{x^2+1}{x^4-5x^2+4}~dx$
(5) $\displaystyle \int \frac{3x+2}{x(x+1)^3}~dx$
(6) $\displaystyle \int \frac{x^4}{x^3-3x+2}~dx$

次の不定積分を求めよ。
(1) $\displaystyle \int \frac{dx}{\sqrt{x+1}-\sqrt x}$
(2) $\displaystyle \int \frac{x}{\sqrt{3x+4}-2}~dx$
この動画を見る 

【数Ⅲ-137】置換積分②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q,次の不定積分を求めよ

①$\int x\sqrt{x+1}dx$

➁$\int(2x-1)(x+1)^3dx$

③$\int \frac{x}{\sqrt{2x+1}}dx$
この動画を見る 

大学入試問題#468「パズルで遊ぶ感じ」 岩手大学(2022) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$:微分可能
$g(x)=f(x)e^{-x}$
(1)
$f'(x)=f(x)+g'(x)e^x$を示せ

(2)
$a$:定数
$f(x)=\displaystyle \int_{a}^{x} (f(t)-4te^{-t}) dt$
$f(0)=1$のとき$f(x),a$を求めよ

出典:2022年岩手大学 入試問題
この動画を見る 

【概要欄必読】大学入試問題#326 Instagram #不定積分

アイキャッチ画像
単元: #不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^{2021}}{x^{2022}+x^{4043}}dx$
この動画を見る 

【数Ⅲ-147】積分特訓②

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分特訓➁)

①$\int\frac{1}{e^x-e^{-x}}dx$

➁$\int\frac{e^x-e^{-x}}{e^x+e^{-x}}dx$

③$\int\cos^5xdx$
この動画を見る 
PAGE TOP