【「式の形」が見えればOK!】平方根:東京都立国立高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【「式の形」が見えればOK!】平方根:東京都立国立高等学校~全国入試問題解法

問題文全文(内容文):
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right) \left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2$を計算せよ.

都立国立高校過去問
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right) \left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2$を計算せよ.

都立国立高校過去問
投稿日:2022.12.30

<関連動画>

【無理数とは!】平方根(有理数と無理数)後編:教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る 

【有理数とは!】平方根(有理数と無理数)前編:教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平方根(有理数と無理数)に関して解説していきます.
この動画を見る 

【この形!どの形?】平方根:渋谷教育学園幕張高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい.
$\dfrac{2+\sqrt2}{\sqrt3+1}-\dfrac{\sqrt2}{\sqrt3-\sqrt2}+\dfrac{\sqrt6-3}{\sqrt2-2}$

渋谷教育学園幕張高等学校過去問
この動画を見る 

【高校受験対策/数学】死守-97

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97

①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。

④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$

⑤二次方程式$3x^2+7x+1=0$を解きなさい。

⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。

⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。

⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る 

西暦「2024」を含む入試予想問題(考察編)~全国入試問題解法

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#平方根
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の入試問題を解け.

$ 2024=2025-1 $

入試予想問題
この動画を見る 
PAGE TOP