問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
チャプター:
0:00 問題1の解説
3:07 問題2の解説
5:39 問題3(1)の解説
8:41 問題3(2)の解説
単元:
#数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材:
#4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
次の2次方程式が実数解をもつように、実数mの値の範囲を定めよ。
(1) x²+2mx+3=0 (2) x²+mx+m=0
2次方程式 x²-2mx-4m=0 が次の条件を満たすように、定数mの値の範囲を定めよ。
(1) 異なる2つの実数解をもつ (2) 実数解をもたない
次の条件を満たすように、実数mの値の範囲を定めよ。
(1) 2次関数 y=x²-2mx+2m+3 のグラフがx軸と共有点をもつ。
(2) 2次関数 y=x²+2mx-m+2 のグラフがx軸と共有点をもたない。
投稿日:2025.02.03