どっちがでかい?2通りの解法で - 質問解決D.B.(データベース)

どっちがでかい?2通りの解法で

問題文全文(内容文):
a,b,cは正の実数で$a^2+b^2=c^2$を満たす次の大小を比較せよ.
(1)$a^3+b^3,c^3$
(2)$\sqrt a+\sqrt b.\sqrt c$
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数で$a^2+b^2=c^2$を満たす次の大小を比較せよ.
(1)$a^3+b^3,c^3$
(2)$\sqrt a+\sqrt b.\sqrt c$
投稿日:2022.07.08

<関連動画>

【数A】整数の性質:日本医科大学 不等式で絞る

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)5つの実数の総和が1であるならば、これらのうち少なくとも1つは$\dfrac{1}{5}$以上で あることを証明しよう。
(2)(1)の結果を利用して、$x_1+x_2+x_3+x_4+x_5=x_1・x_2・x_3・ x_4・x_5$を満たす正の整数$x_1,x_2,x_3,x_4,x_5$(ただし、 $x_1≦x_2≦x_3≦x_4≦x_5$)の組をすべて求めよう。
この動画を見る 

産業医科大 三角比の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#産業医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{2}{7}\pi+\cos\dfrac{4}{7}\pi+\cos\dfrac{8}{7}\pi=?$

$\sin\dfrac{2}{7}\pi+\sin\dfrac{4}{7}\pi+\sin\dfrac{8}{7}\pi=?$

これらを求めよ。

産業医科大過去問
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

大学受験過去問シリーズ!横浜国立大2019年(理系)第4問の解説 #数学 #過去問 #横浜国立大学

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
横浜国立大2019年(理系)第4問の解説していきます.
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 曲線C:y=\cos^3x (0 \leqq x \leqq \frac{\pi}{2}),x軸およびy軸で囲まれる図形の面s系をS\\
とする。0 \lt t \lt \frac{\pi}{2}とし、C上の点Q(t,\cos^3t)と原点O,およびP(t,o),R(0,\cos^3t)\\
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。\\
(1)Sを求めよ。\\
(2)f(t)は最大値をただ一つのtでとることを示せ。そのときのtを\alphaとすると、\\
f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha} であることを示せ。\\
(3)\frac{f(\alpha)}{S} \lt \frac{9}{16} を示せ。
\end{eqnarray}

2022京都大学理系過去問
この動画を見る 
PAGE TOP