【数Ⅱ】微分法と積分法:2021年度東大文科第1問を典型解法で攻略! ~ドラゴン桜×理数個別~ - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:2021年度東大文科第1問を典型解法で攻略! ~ドラゴン桜×理数個別~

問題文全文(内容文):
東大文科2021大問1
aを正の実数とする。座標平面上の曲線Cをy=ax³-2xで定める。原点を中心とする半径1の円とCの共有点の個数が6個であるようなaの範囲を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大文科2021大問1
aを正の実数とする。座標平面上の曲線Cをy=ax³-2xで定める。原点を中心とする半径1の円とCの共有点の個数が6個であるようなaの範囲を求めよ。
投稿日:2021.03.01

<関連動画>

疑うところからすべては始まる 聖徳学園

アイキャッチ画像
単元: #大学入試過去問(数学)#相似な図形#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x=?
*図は動画内参照

聖徳学園高等学校2023
この動画を見る 

2人だけ隣り合う並び方 京都産業大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
男子3人、女子3人の合わせて6人が1列に並ぶとき、女子のうち2人だけが隣り合う並び方は何通り?
京都産業大学附属中学校・高等学校
この動画を見る 

大学入試問題#165 神戸大学(2021) ウォリス積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}x^2\sqrt{ 1-x^2 }\ dx$を求めよ。
(ウォリス積分)

出典:2021年神戸大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第4問〜3次方程式の解が直角三角形を作る条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$を実数の定数となる。

$z$についての方程式

$z^3-5z^2+kz-5=0$の$3$つの解は

複素数平面上で斜辺$2$の直角三角形の頂点となる。

このとき、$k=\boxed{ト}$であり、

この直角三角形の面積は$\boxed{ナ}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

福田の数学〜共通テスト対策にもバッチリ〜杏林大学2023年医学部第2問後編〜平面と直線の交点の位置ベクトルと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-1,0,-2), B(-2,-2, -3 ), C(1, 2,- 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP