【高校受験対策/数学】図形40 - 質問解決D.B.(データベース)

【高校受験対策/数学】図形40

問題文全文(内容文):
高校受験対策・図形40

図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。

①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。

②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形40

図1のように、点$O$を中心とし線分$AB$を直径とする 半径$3cm$の半円がある。
$\stackrel{\huge\frown}{AB}$上に2点$P,Q$があり、$A$に近い方を$P$、$B$に近い方を$Q$とする。
また、線分$BP$と線分$OQ$の交点を$R$とし、線分$AQ$と線分$BP$の交点を$S$とする。
このとき、次の問いに答えなさい。

①$\triangle RQC \backsim \triangle RPQ$を証明しなさい。

②図2のように、$\angle QOC=90°$、$OS /\!/ BQ$となるとき、線分$BR$の長さを求めなさい。
投稿日:2021.10.03

<関連動画>

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

【数学】中3-53 相似と面積②(応用編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$AD//BC,AD:BC=1:3$で$\triangle AOD$の面積が$5c㎡$である。

①$\triangle BOC$の面積は?

②台形$ABCD$の面積は?

③$□ABCDでAE:ED=3:1$。
このとき、$\triangle ABE$と四角形$EBCD$の面積比は?
※図は動画内参照
この動画を見る 

3通りで解説しました。開成高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$9+3(x^2+x+1)+x^2(x+1)$

開成高等学校
この動画を見る 

【覚えるのは数式じゃない。方法だ!】公式:二次関数の変化の割合~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
全国入試問題
覚えたら3秒で正解!?

$y=ax^2$に対して、変化の割合は
$a(x_1+x_2)$

$A:(x_1,y_1)$
$B:(x_2,y_2)$
この動画を見る 

【本質をつかめ…!】平方根:東京工業大学附属科学技術高等学校~全国入試問題解法

単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#東京工業大学附属科学技術高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の計算をしなさい。
$\left(\frac{\sqrt{18}}{\sqrt{12}}-\frac{\sqrt{12}}{\sqrt{18}}\right)\left(\frac{\sqrt{3}}{\sqrt{2}}-\frac{\sqrt{2}}{\sqrt{3}}\right)$
この動画を見る 
PAGE TOP