Japanese Mathematics Olympiad 2017 - 質問解決D.B.(データベース)

Japanese Mathematics Olympiad 2017

問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.

2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.

2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
投稿日:2018.11.10

<関連動画>

【数A】場合の数:PとCの違い

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
場合の数のPとCの使い分けについての解説です。
この動画を見る 

福田の数学〜東北大学2023年理系第1問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 赤玉4個と白玉5個の入った、中の見えない袋がある。玉はすべて、色が区別できる他には違いはないものとする。A,Bの2人が、Aから交互に、袋から玉を1個ずつ取り出すゲームを行う。ただし取り出した玉は袋の中に戻さない。Aが赤玉を取り出したらAの勝ちとし、その時点でゲームを終了する。Bが白玉を取り出したらBの勝ちとし、その時点でゲームを終了する。袋から玉がなくなったら引き分けとし、ゲームを終了する。
(1)このゲームが引き分けとなる確率を求めよ。
(2)このゲームにAが勝つ確率を求めよ。

2023東北大学理系過去問
この動画を見る 

場合の数 組み合わせ応用②【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・円に内接する八角形の3個の頂点を結んで三角形を作る。
(1)八角形と一辺だけを共有する三角形は何個あるか。
(2)八角形と辺を共有しない三角形は何個あるか。

・1から20までの20個の整数から、異なる3個を選んで組を作る。
(1)奇数だけを含んでいる組は何通りできるか。
(2)奇数も偶数も含んでいる組は何通りできるか。
(3)3個の数の和が奇数となる組は何通りできるか。
この動画を見る 

二次方程式の解と確率 2024立教新座

アイキャッチ画像
単元: #数Ⅰ#数A#2次関数#場合の数と確率#2次方程式と2次不等式#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
さいころを3回続けて投げるとき、1回目、2回目、3回目に出た目の数をそれぞれa,b,cとする。
2次方程式$ax^2+bx+c=0$について2つの解が-2、-3となる確率を求めよ
2024立教新座高等学校
この動画を見る 

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP