奈良県教員採用試験(数学 存在領域) - 質問解決D.B.(データベース)

奈良県教員採用試験(数学 存在領域)

問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
単元: #数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
投稿日:2021.03.14

<関連動画>

03京都府教員採用試験(数学:3番 微分方程式(特殊解)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$(\sin x+1)\dfrac{dy}{dx}-(y+1)\cos x=0$
$x=0$とき,$y=1$をみたす特殊解を求めよ.
この動画を見る 

16愛知県教員採用試験(数学:10番(2) 微分積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$
$f(x)=\displaystyle \int_{0}^{x} \ (1-t^2)e^t \ dt$の極値を求めよ.
この動画を見る 

練習問題18 どっかの教採の問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$f(\theta)=\sin2\theta+\sin\theta-\cos\theta+k\ (0\leqq \theta\leqq \pi)$
$f(\theta)=0$が異なる3つの解をもつような$k$の範囲を求めよ.
この動画を見る 

16和歌山県教員採用試験(数学:2番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
$a,b$は実数とする.
$x^3+6ax+b=0$が$a-3i$を解にもつとき,
$a,b$の値とそのときの実数解を求めよ.
この動画を見る 

13神奈川県教員採用試験(数学:8番 行列)

アイキャッチ画像
単元: #その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
8⃣ $A=\begin{pmatrix}
-1 & -3 \\
1 & 2
\end{pmatrix}$
$S=A+A^2+\cdots+A^{99}$を求めよ。
この動画を見る 
PAGE TOP