問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
単元:
#数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師:
ますただ
問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
投稿日:2021.03.14





