奈良県教員採用試験(数学 存在領域) - 質問解決D.B.(データベース)

奈良県教員採用試験(数学 存在領域)

問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
単元: #数Ⅱ#図形と方程式#軌跡と領域#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$0\leqq \theta \leqq \dfrac{3}{4}\pi$とする.
直線$y=2(\cos\theta+\sin\theta)x-1-\sin2\theta$が
通る領域を図示せよ.
投稿日:2021.03.14

<関連動画>

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
この動画を見る 

06兵庫県教員採用試験(数学:5番類題 極限値)

アイキャッチ画像
単元: #関数と極限#関数の極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$\displaystyle \lim_{ x \to +0 } xlogx$
この動画を見る 

#14 数検1級1次過去問 数列 数検・教員採用試験

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#その他#数学検定#数学検定1級#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$

$A=\begin{pmatrix}
3 & 0 & 2 \\
-4 & 1 & -3 \\
1 & 5 & -2
\end{pmatrix}$

次の行列を,$\ell A^2+mA+nE$で表せ.
$(\ell,m,n=IR)$

(1)$A^3$
(2)$A^5-5A^4+16A^3-24A^2$
この動画を見る 

14京都府教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣$y=a(1+sinx)cosx(0 \leqq x \leqq 2\pi)$
の最大値が18のときaの値を求めよ。(a>0)
この動画を見る 

08大阪府教員採用試験(数学:4番 微分積分)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$0\leqq \theta \leqq 2\pi$とする.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\theta-\sin\theta \\
y=1-\cos\theta
\end{array}
\right.
\end{eqnarray}$
のグラフをかき面積を求めよ.
この動画を見る 
PAGE TOP