数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound - 質問解決D.B.(データベース)

数学の概要を一気につかむ音楽~全国入試問題解法 #shorts #数学 #高校入試 #sound

問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.

慶応志木高校過去問
単元: #数学(中学生)#中2数学#中3数学#2次方程式#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ t^2-(4t-1)x+4t^2-2t=0$の2解を$ \alpha,\beta$とすぅる.
3辺の長さが,$5,\alpha,\beta$である三角形が直角三角形である.
$t$の値を求めよ.

慶応志木高校過去問
投稿日:2023.01.22

<関連動画>

中2数学「1次関数のグラフの書き方②」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数のグラフの書き方②~

例題次のグラフを書きなさい。

(1)x = - 2(2) y = 3

(3) 2y = - 8(4) 2x - 5 = 3
この動画を見る 

中2数学「連立方程式の文章題①(代金の問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題①~

例題
1枚60円の色紙Aと1枚80円の色紙Bを合わせて20枚買ったら、 代金の合計は1440円でした。
色紙Aと 紙Bはそれ ぞれ何枚買いましたか。
この動画を見る 

【中1 P.96】3編の力だめし

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#比例・反比例
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしよう.

1.①$6(x-2)=-3(2+3x)$

②$\dfrac{x+3}{4}-\dfrac{x-1}{6}=1$

2.①$5:(x-2)=3:x$

②$5:x=\dfrac{1}{4}:\dfrac{7}{10}$

3.$4x+2a-3(x-a)-3$
この動画を見る 

【数学】中2-18 ややこしい連立方程式①

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の連立方程式を求めよう.

①$\begin{eqnarray}
\left\{
\begin{array}{l}
3(x+y)=4x-7 \\
2x=3y+8
\end{array}
\right.
\end{eqnarray}$

②$\begin{eqnarray}
\left\{
\begin{array}{l}
0.5x-0.2y=2 \\
2x-3y=-3
\end{array}
\right.
\end{eqnarray}$

③$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{x}{3}+\dfrac{y}{4}=-1 \\
3y=-5x-9
\end{array}
\right.
\end{eqnarray}$

④$\begin{eqnarray}
\left\{
\begin{array}{l}
2(3x+y)=8x+y+9 \\
5x-4y+30=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

中2数学「解を利用する連立方程式の問題」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~解を利用する連立方程式の問題~

例題
例1 $\begin{eqnarray}
\left\{
\begin{array}{l}
ax-by=4 \\
bx-ay~=5
\end{array}
\right.
\end{eqnarray}$
の解が$x=2.y=-1$のとき、$a,b$の値を求めなさい。

例2 次の2つの連立方程式が同じ解をもつとき、a.bの値を求めなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=3 \\
2ax-by=-11
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=-1 \\
x+y=-1
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP