【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。 - 質問解決D.B.(データベース)

【数C】空間ベクトル:4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよう。また、中心座標と半径も求めよう。

問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよ。
また、中心座標と半径も求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:13 球面の一般系と標準形について
0:43 問題解説
4:52 名言

単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点(1,1,1) (-1,1,-1) (-1,-1,0) (2,1,0)を通る球面の方程式を求めよ。
また、中心座標と半径も求めよ。
投稿日:2020.03.12

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第4問〜空間図形とベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a
を満たす四面体ABCDを考える。このとき、cosBAD=    である。
また、ADの中点をEとしたとき、EBAB,AC,ADを用いて表すと
EB=    となるので、|EB|=    で、
EBEC=    
である。よって、a=1のとき、cosBEC=    であり、
BEC=60°となるのはa=    のときである。

2022慶応義塾大学看護医療学科過去問
この動画を見る 

20年5月数学検定1級1次試験(四面体の体積)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#空間ベクトル#空間ベクトル#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
3⃣4点 A(1,-4,1),B(2,2,2),C(2,-6,-3),D(3,-2,-1)とする。
四面体ABCDの体積Vを求めよ。
この動画を見る 

数学「大学入試良問集」【14−11空間ベクトルと正四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
四面体OABCの辺AB4:5に内分する点をD、辺OC2:1に内分する点をEとし、線分DEの中点をP、直線OPが平面ABCと交わる点をQとする。
次の各問いに答えよ。
(1)
OA=a, OB=b, OC=cとおくとき、OPa, b, cで表せ。
また、OPOQの大きさの比|OP|:|OQ|を最も簡単な整数比で表せ。

(2)
ABQABCの面積比ABQ:ABCを最も簡単な整数比で表せ。
この動画を見る 

【数学B】平面の方程式(発展)【空間ベクトル】

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学B】平面の方程式(発展)の解説動画です
-----------------
A(1,2,2)を通り、n(3,2,4)に垂直な平面の方程式は?
この動画を見る 

福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトルu=(1, ,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦π2)とすると、cosθ=    である。

2020慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP preload imagepreload image