【数C】ベクトルが「平行」であるときの典型解法をおさえよう! - 質問解決D.B.(データベース)

【数C】ベクトルが「平行」であるときの典型解法をおさえよう!

問題文全文(内容文):
アドバンスプラス数学B
問題615
vec(a)=(1,x),vec(b)=(x,4)が平行であるような実数xの値を求めよ。
チャプター:

00:00問題文
00:09解説(置き方)
00:28成分比較

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題615
vec(a)=(1,x),vec(b)=(x,4)が平行であるような実数xの値を求めよ。
投稿日:2022.10.25

<関連動画>

福田の数学〜筑波大学2024理系第1問〜交点の位置ベクトルと面積面積

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{OAB}$ において、$\mathrm{OA}=\mathrm{OB}=2$ とする。$\angle \mathrm{OAB}$ の二等分線と線分 $\mathrm{OB}$ の交点を $\mathrm{C}$ とし、点 $\mathrm{O}$ から直線 $\mathrm{AC}$ に垂線 $\mathrm{OD}$ を引く。$\vec{\mathrm{OA}}=\vec{a}, \, \vec{\mathrm{OB}}=\vec{b}$ とおく。以下の問いに答えよ。
$(1)$ $\vec{\mathrm{AC}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
$(2)$ $\vec{\mathrm{OD}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
この動画を見る 

【高校数学】 数B-40 点の座標とベクトルの成分

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
問題1
$A(1,2,-1),B(0,3,2),C(5,-1,4)$のとき,
次のベクトルを成分で表し,その大きさを求めよう.
①$\overrightarrow{ AB }$

②$\overrightarrow{ BC }$

③4点$A(1,2,4),B(2,-3,2),C(4,-1,5),D$を頂点とする
平行四辺形$ABCD$がある.頂点$D$の座標を求めよう.
この動画を見る 

【高校数学】 数B-49 位置ベクトルと図形⑤

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
四面体$OABC$と点$P$について,
$7\overrightarrow{OP}+2\overrightarrow{AP}+4\overrightarrow{BP}+5\overrightarrow{CP}=\overrightarrow{O}$が成り立つ.

①点$P$はどのような位置にあるか答えよう.

②四面体$OABC,PABC$の体積をそれぞれ$V_1,V_2$とするとき,
$V_1:V_2$を求めよう.
この動画を見る 

【ベクトル方程式→図の考え方はこれ!】ベクトル方程式の基礎を解説しました〔数学、高校数学〕

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトル方程式の基礎について解説します。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP