福田の数学〜どれだけの情報を引き出せるかが勝負〜早稲田大学2023年商学部第2問〜球に内接する四面体の体積の最大 - 質問解決D.B.(データベース)

福田の数学〜どれだけの情報を引き出せるかが勝負〜早稲田大学2023年商学部第2問〜球に内接する四面体の体積の最大

問題文全文(内容文):
$\Large{\boxed{2}}$ 中心O、半径1の球に内接する四面体で、その4頂点$T_1$, $T_2$, $T_3$, $T_4$が次の条件(i), (ii)を満たすものを考える。
(i)|$\overrightarrow{T_1T_2}$|=$\sqrt 3$
(ii)$k$($\overrightarrow{OT_1}$+$\overrightarrow{OT_2}$)+$\overrightarrow{OT_3}$+$\overrightarrow{OT_4}$=$\overrightarrow{0}$
ここで、$k$は2未満の正の実数とする。次の設問に答えよ。
(1)線分$T_3T_4$の中点をMとしたとき、$\triangleT_1T_2M$の面積を$k$を用いて表せ。
(2)各$k$に対し、上の条件を満たす四面体の体積の最大値を$V(k)$とする。$V(k)$が最大になるときの$k$の値を求めよ。
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 中心O、半径1の球に内接する四面体で、その4頂点$T_1$, $T_2$, $T_3$, $T_4$が次の条件(i), (ii)を満たすものを考える。
(i)|$\overrightarrow{T_1T_2}$|=$\sqrt 3$
(ii)$k$($\overrightarrow{OT_1}$+$\overrightarrow{OT_2}$)+$\overrightarrow{OT_3}$+$\overrightarrow{OT_4}$=$\overrightarrow{0}$
ここで、$k$は2未満の正の実数とする。次の設問に答えよ。
(1)線分$T_3T_4$の中点をMとしたとき、$\triangleT_1T_2M$の面積を$k$を用いて表せ。
(2)各$k$に対し、上の条件を満たす四面体の体積の最大値を$V(k)$とする。$V(k)$が最大になるときの$k$の値を求めよ。
投稿日:2023.10.25

<関連動画>

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

六角形バリアは不可能じゃね?

アイキャッチ画像
単元: #図形の性質#空間における垂直と平行と多面体(オイラーの法則)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
葬送のフリーレンのバリアなどで六角形で球を作っている件に関して解説していきます。
この動画を見る 

オイラーの多面体定理 説明(英語)

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの多面体定理 説明動画です
この動画を見る 

これ知ってる?

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
正四面体の体積を一瞬で出す方法を解説していきます.
この動画を見る 

福田の数学〜早稲田大学2022年理工学部第4問〜正八面体の内部に配置した6個の球の和集合の体積と共通部分の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが\sqrt3+1である正八面体の頂点を右図(※動画参照)\\
のようにP_1,P_2,P_3,P_4,P_5,P_6とする。i=1,2,\ldots,6に対して\\
P_i以外の5点を頂点とする四角錐のすべての面に\\
内接する球(内部含む)をB_iとする。B_1の体積をXとし、B_1と\\
B_2の共通部分の体積をYとし、B_1,B_2,B_3の共通部分の体積をZ\\
とする。さらにB_1,B_2,\ldots,B_nを合わせて得られる立体の体積を\\
V_n\ \ (n=2,3,\ldots,6)とする。以下の問いに答えよ。\\
(1)V_n=aX+bY+cZとなる整数a,b,cをn=2,3,6の場合\\
について求めよ。\\
(2)Xの値を求めよ。\\
(3)V_2の値を求めよ。\\
\end{eqnarray}

2022早稲田大学理工学部過去問
この動画を見る 
PAGE TOP