【高校数学】 数A-8 順列② ・ 続・基本編 - 質問解決D.B.(データベース)

【高校数学】  数A-8  順列② ・ 続・基本編

問題文全文(内容文):
①5種類の数字1,2,3,4,5を並べて3桁の整数をつくるとなん通りできる?

②5種類の数字1,2,3,4,5を重複を許して並べて3桁の整数をつくるとなん通りできる?

③4人が1回じゃんけんするとき、手の出し方は何通りある?
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①5種類の数字1,2,3,4,5を並べて3桁の整数をつくるとなん通りできる?

②5種類の数字1,2,3,4,5を重複を許して並べて3桁の整数をつくるとなん通りできる?

③4人が1回じゃんけんするとき、手の出し方は何通りある?
投稿日:2014.05.08

<関連動画>

確率×整数問題!さいころの目の最小公倍数や最大公約数【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の自然数とする。1個のさいころを続けて$n$回投げる試行を行い,出た目を順に$X_1,X_2,・・・,X_n$とする。

(1)$X_1,X_2,・・・,X_n$の最大公約数が3となる確率を$n$の式で表せ。

北海道大過去問
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
赤玉6個青玉5個から4個取り出します。
赤玉と青玉がそれぞれ少なくとも1個含まれる確率は?

東北学院大過去問
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第1問PART1〜格子折れ線の個数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ xy平面において、x座標およびy座標が共に整数であるような点を格子点と呼ぶ。xy平面上の相異なる2つの格子点を端点とする折れ線のうち、x座標またはy座標が等しい格子点どうしを結ぶ線分のみから構成され、かつ同じ点を2度通ることはないものを、格子折れ線と呼ぶ。ここで格子折れ線の向きは考慮せず、端点および通過する点がすべて等しい格子折れ線は同じものとする。また、自然数$n$に対し、
0≦$x$≦$n$ かつ 0≦$y$≦1
を満たす格子点全体の集合を$V_n$とする。さらに、$V_n$に属する格子点をすべて通り、かつ$V_n$に属さない格子点は通らない格子折れ線全体の集合を$L_n$とする。たとえば、7つの格子点(0,1),(0,0),(1,0),(1,1),(4,1),(4,0),(2,0)を順に結んだ折れ線は$L_4$に属する。このとき、以下の問いに答えよ。
(1)$L_1$および$L_2$に属する格子折れ線をすべて図示せよ。
(2)$L_4$に属する格子折れ線のうち、両端点の$x$座標の差が3以上となるものをすべて図示せよ。
(3)$n$≧3のとき、$L_n$に属する格子折れ線のうち、両端点の$x$座標の差が$n$-2となるものの個数を求めよ。
(4)$L_n$に属する格子折れ線の個数$l_n$を$n$を用いて表せ。
この動画を見る 

福田のわかった数学〜高校1年生065〜場合の数(4)0を含む順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(4) 0を含む順列
$0,1,2,3,4,5,6$から異なる4個を選んで
4桁の整数を作るとき、次の個数を求めよ。
(1)全部で  (2)偶数  (3)奇数  (4)9の倍数  (5)4の倍数
この動画を見る 
PAGE TOP