福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第4問〜空間に浮かぶ四面体の平面による切り口の面積

問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標空間の4点O(0,0,0),A(-3,-1,1),B(2,-2,2),C(3,3,3)を頂点とする四面体OABCの、平面$z$=$t$による切り口を$S_t$とする。
(1)$S_t$は1<$t$<2のとき四角形となり、$t$=1および$t$=2のとき三角形となる。
1<$t$1 となるので、点Eはこの六面体の外にある。
(さ),(し),(す)の選択肢:ABC,ABD,ACD,BCD,OAD,OBD,OCD
(4)1<$t$<2に対して、(3)の六面体を平面$z$=$t$で切った切り口の面積を$U(t)$とすると、$U(t)$は$t$=$\boxed{\ \ (た)\ \ }$(ただし1<$\boxed{\ \ (た)\ \ }$<2)において最大値$\boxed{\ \ (ち)\ \ }$をとる。
投稿日:2024.06.26

<関連動画>

福田の数学〜慶應義塾大学2021年経済学部第5問〜ベクトルの空間図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$
空間の2点OとAは$|\overrightarrow{ OA }|=2$を満たすとし、点Aを通り$\overrightarrow{ OA }$に直交する平面をHとする。
平面H上の三角形ABCは、正の実数aに対し
$|\overrightarrow{ AB }|=2a, |\overrightarrow{ AC }|=3a, \overrightarrow{ AB }・\overrightarrow{ AC }=2a^2$
を満たすとする。ただし、$\overrightarrow{ u }・\overrightarrow{ v }$はベクトル$\overrightarrow{ u }$と$\overrightarrow{ v }$の内積を表す。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }$の値を求めよ。
さらに、線分ABの平面H上にある垂直二等分線をl、線分ACを2:1に内分する点を
通り、線分ACに直交するH上の直線をmとする。また、lとmの交点をPとする。
(2)ベクトル$\overrightarrow{ OP }$を、実数$\alpha,\beta,\gamma$を用いて
$\overrightarrow{ OP }=\alpha\overrightarrow{ OA }+\beta\overrightarrow{ OB }+\gamma\overrightarrow{ OC }$と表すとき、
$\alpha,\beta,\gamma$の値をそれぞれ求めよ。
(3)空間の点Qは$2\overrightarrow{ OA }+\overrightarrow{ OQ }=\overrightarrow{ 0 }$を満たすとする。直線PQが、
点Oを中心とする半径2の球Sに接しているとき、$|\overrightarrow{ AP }|$の値および$a$の値を求めよ。
さらに、直線l上の点Rを、直線QRがSに接し、Pとは異なる点とする。このとき、
$\triangle APR$の面積を求めよ。

2021慶應義塾大学経済学部過去問
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

【数C】空間ベクトル:平行、一直線の問題!!

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)四面体ABCDにおいて、△ABCの重心をE、△ABDの重心をFとするとき、EF//CDであることを証明せよ。
(2)3点A(-1,-1,-1),B(1,2,3),C(x,y,1)が一直線上にあるとき、x,yの値を求めよ。
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第5問ベクトル〜三角錐をベクトルで考える

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト#数C
指導講師: 福田次郎
問題文全文(内容文):
第5問
三角錐PABCにおいて、辺BCの中点をMとおく。また、$\angle$PAB=$\angle$PACとし、この角度をθをおく。0°< θ < 90°とする。
(1)$\overrightarrow{AM}$は
$\overrightarrow{AM}$=$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\overrightarrow{AB}$+$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}\overrightarrow{AC}$
と表せる。また
$\frac{\overrightarrow{AP}・\overrightarrow{AB}}{|\overrightarrow{AP}||\overrightarrow{AB}|}$=$\frac{\overrightarrow{AP}・\overrightarrow{AC}}{|\overrightarrow{AP}||\overrightarrow{AC}|}$=$\boxed{\boxed{\ \ オ\ \ }}$  ...①
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\sin \theta$ ①$\cos \theta$ ②$\tan \theta$ 
③$\frac{1}{\sin \theta}$ ④$\frac{1}{\cos \theta}$ ⑤$\frac{1}{\tan \theta}$ 
⑥$\sin\angle$BPC ⑦$\cos\angle$BPC ⑧$\tan\angle$BPC
(2)θ=45°とし、さらに
$|\overrightarrow{AP}|$=3√2, $|\overrightarrow{AB}|$=$|\overrightarrow{PB}|$=3, $|\overrightarrow{AC}|$=$|\overrightarrow{PC}|$=3
が成り立つ場合を考える。このとき
$\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$=$\boxed{\ \ カ\ \ }$
である。さらに、直線AM上の点Dが$\angle$APD=90°を満たしているとする。このとき、$\overrightarrow{AD}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$である。
(3)
$\overrightarrow{AQ}$=$\boxed{\ \ キ\ \ }\overrightarrow{AM}$
で定まる点をQとおく。$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直である三角錐PABCはどのようなものかについて考えよう。例えば(2)の場合では、点Qは点Dと一致し、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
(i)$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であるとき、$\overrightarrow{PQ}$を$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AP}$を用いて表して考えると、$\boxed{\boxed{\ \ ク\ \ }}$が成り立つ。さらに①に注意すると、$\boxed{\boxed{\ \ ク\ \ }}$から$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つことがわかる。
したがって、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であれば、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立つ。逆に、$\boxed{\boxed{\ \ ケ\ \ }}$が成り立てば、$\overrightarrow{PA}$と$\overrightarrow{PQ}$は垂直である。
$\boxed{\boxed{\ \ ク\ \ }}$の解答群
⓪$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AP}・\overrightarrow{AP}$
①$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AP}・\overrightarrow{AP}$
②$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$\overrightarrow{AB}・\overrightarrow{AC}$
③$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=$-\overrightarrow{AB}・\overrightarrow{AC}$
④$\overrightarrow{AP}・\overrightarrow{AB}$+$\overrightarrow{AP}・\overrightarrow{AC}$=0
⑤$\overrightarrow{AP}・\overrightarrow{AB}$-$\overrightarrow{AP}・\overrightarrow{AC}$=0
$\boxed{\boxed{\ \ ケ\ \ }}$の解答群
⓪$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$\sqrt 2|\overrightarrow{BC}|$
①$|\overrightarrow{AB}|$+$|\overrightarrow{AC}|$=$2|\overrightarrow{BC}|$
②$|\overrightarrow{AB}|\sin\theta$+$|\overrightarrow{AC}|\sin\theta$=$|\overrightarrow{AP}|$
③$|\overrightarrow{AB}|\cos\theta$+$|\overrightarrow{AC}|\cos\theta$=$|\overrightarrow{AP}|$
④$|\overrightarrow{AB}|\sin\theta$=$|\overrightarrow{AC}|\sin\theta$=$2|\overrightarrow{AP}|$
⑤$|\overrightarrow{AB}|\cos\theta$=$|\overrightarrow{AC}|\cos\theta$=$2|\overrightarrow{AP}|$
(ii)kを正の実数とし
$k\overrightarrow{AP}・\overrightarrow{AB}$=$\overrightarrow{AP}・\overrightarrow{AC}$
が成り立つとする。このとき、$\boxed{\boxed{\ \ コ\ \ }}$が成り立つ。
また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。
このとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ サ\ \ }}$であることと同値である。特にk=1のとき、$\overrightarrow{PA}$と$\overrightarrow{PQ}$が垂直であることは、$\boxed{\boxed{\ \ シ\ \ }}$であることと同値である。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
⓪$k|\overrightarrow{AB}|$=$|\overrightarrow{AC}|$ ①$|\overrightarrow{AB}|$=$k|\overrightarrow{AC}|$ 
②$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AB}|$ ③$k|\overrightarrow{AP}|$=$\sqrt 2|\overrightarrow{AC}|$
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪B'とC'がともに線分APの中点
①B'とC'が線分APをそれぞれ(k+1):1と1:(k+1)に内分する点
②B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
③B'とC'が線分APをそれぞれk:1と1:kに内分する点
④B'とC'が線分APをそれぞれ1:kとk:1に内分する点
⑤B'とC'がともに線分APをk:1に内分する点
⑥B'とC'がともに線分APを1:kに内分する点
$\boxed{\boxed{\ \ シ\ \ }}$の解答群
⓪$\triangle$PABと$\triangle$PACがともに正三角形
①$\triangle$PABと$\triangle$PACがそれぞれ$\angle$PBA=90°, $\angle$PCA=90°を満たす直角二等辺三角形
②$\triangle$PABと$\triangle$PACがそれぞれBP=BA, CP=CAを満たす二等辺三角形
③$\triangle$PABと$\triangle$PACが合同
④AP=BC

2023共通テスト過去問
この動画を見る 

【数C】【空間ベクトル】4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#空間ベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
4点A(1,1,2)、B(0,-4,0)、C(-1,1,-2)、D(2,3,5)がある。線分AB,AC,ADを3辺とする平行六面体の他の頂点の座標を求めよ。
この動画を見る 
PAGE TOP