【概要欄必読】大学入試問題#172 東京都市大学 定積分 - 質問解決D.B.(データベース)

【概要欄必読】大学入試問題#172 東京都市大学 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
チャプター:

00:30~ 1つ目の解答
05:00~ 別解
07:37~ 解答のみ掲載 10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\sqrt{ 3 }}{2}}(x+4x^3)\sqrt{ 1+4x^2 }\ dx$

出典:東京都市大学 入試問題
投稿日:2022.04.17

<関連動画>

#奈良教育大学(2014) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{log\ x}{x^2} dx$

出典:2014年奈良教育大学
この動画を見る 

大学入試問題#136 南山大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1}|2x(1-x^2)e^{-x^2}|dx$を計算せよ。

出典:2021年南山大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題017〜東北大学2016年度理系数学第6問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\int_0^{\pi}|\sin(t-x)-\sin2t|dt$
の区間$\ 0 \leqq x \leqq \pi\ $における最大値と最小値を求めよ。

2016東北大学理系過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第1問〜関数の増減と面積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#大学入試解答速報#数学#明治大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$関数$f(x)=\frac{1}{2}(x+\sqrt{2-3x^2})$の定義域は$-\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }} \leqq x \leqq \frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$であり、
$f(x)$は$x=\frac{\sqrt{\boxed{\ \ オ\ \ }}}{\boxed{\ \ カ\ \ }}$のとき、
最大値$\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$をとる。曲線$y=f(x)$、

直線$y=2x$およびy軸で囲まれた図形の面積は$\boxed{\ \ ケ\ \ }$となる。

$\boxed{\ \ ケ\ \ }$の解答群
$⓪\frac{\sqrt3}{18}\pi  ①\frac{\sqrt3}{36}\pi  ②\frac{\sqrt3}{72}\pi  ③\frac{1}{6}+\frac{\sqrt3}{36}\pi  ④\frac{1}{24}+\frac{\sqrt3}{36}\pi$
$⑤\frac{5}{24}+\frac{\sqrt3}{36}\pi  ⑥\frac{1}{3}+\frac{\sqrt3}{18}\pi  ⑦\frac{1}{6}+\frac{\sqrt3}{18}\pi  ⑧\frac{1}{8}+\frac{\sqrt3}{18}\pi  ⑨\frac{7}{24}+\frac{\sqrt3}{18}\pi$
この動画を見る 
PAGE TOP