AkiyaMathさんと学ぶ積分問題 #King_property - 質問解決D.B.(データベース)

AkiyaMathさんと学ぶ積分問題 #King_property

問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+2x)}{1+x+x^2}dx$
チャプター:

00:00 問題紹介
00:10 本編スタート
10:12 作成した解答①
10:24 作成した解答②
10:34 作成した解答③
10:45 エンディング(音源提供:兄いえてぃ様)

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{log(1+2x)}{1+x+x^2}dx$
投稿日:2022.10.01

<関連動画>

大学入試問題#67 福岡教育大学(2009) 置換積分①

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log7}(\displaystyle \frac{e^x}{1+e^x})^2dx$を計算せよ。

出典:2009年福岡教育大学 入試問題
この動画を見る 

大学入試問題#14 津田塾大学(2021) 微積の応用

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \leqq x \leqq \displaystyle \frac{\pi}{x}$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}\sin|x-t|dt$の最小値、最大値を求めよ。

出典:2021年津田塾大学 入試問題
この動画を見る 

大学入試問題#487「みるからに微分」 電気通信大学(2022) #定積分 #極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 4 } \displaystyle \frac{1}{x-4}\displaystyle \int_{2}^{\sqrt{ x }} log(1+t^2)dt$

出典:2022年電気通信大学 入試問題
この動画を見る 

大学入試問題#382「初手が重要かと」 千葉大学 改 2009 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{3\sqrt{ 3 }} \displaystyle \frac{1}{1+\sqrt[ 3 ]{ x^2 }} dx$

出典:2009年千葉大学 入試問題
この動画を見る 

大学入試問題#884「ミスれん」 #東京理科大学(2022) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x-4}{2x^2+5x+2}$ $dx$

出典:2022年東京理科大学
この動画を見る 
PAGE TOP